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 THE THREE BROTHERS' PROBLEM: KIN SELECTION
 WITH MORE THAN ONE POTENTIAL HELPER.

 1. THE CASE OF IMMEDIATE HELP

 ILAN ESHEL AND UZI MOTRO

 Department of Statistics, School of Mathematics, Tel-Aviv University, Ramat-Aviv,
 Tel Aviv 69978, Israel; Department of Statistics and Department of Genetics,

 Hebrew University, Jerusalem 91905, Israel

 Submitted June 5, 1986; Revised March 16, 1987; Accepted August 17, 1987

 Although the theory of kin selection (Hamilton 1964, 1972) has been introduced
 in terms of one individual (the donor) helping another (the recipient), altruistic
 behavior in general may involve more than two interacting individuals. An ex-
 treme (but maybe very common) example is that of an inherited physiological or
 biochemical trait that prevents the carrier from harming its neighbors (e.g., Eshel
 1972; Cohen and Eshel 1976; Matessi and Jayakar 1976; Wilson 1979). Even
 situations of directed (active) altruism only rarely involve exactly two individuals,
 a donor and a recipient. In many situations an individual needs help, and this help
 can be provided, at some risk, by each of several relatives.

 A natural question is what kind of behavior is favored by natural selection.
 Obviously, even when Hamilton's condition for altruistic behavior between two
 relatives is met, it is advantageous to stand by, letting another relative take the
 risk and provide the necessary help. If all are passive, however, then the original
 argument of Hamilton holds, and any potential helper can increase its own
 inclusive fitness by exclusively taking the risk and saving the relative in need.
 Once the helper takes the risk, the inclusive fitness of any other relative who
 decided to stand by will increase even more. Therefore, it seems that if any
 altruistic relative is in the vicinity, natural selection always favors the other selfish
 relatives.

 In this paper, we attempt to show that simple arguments of evolutionary
 stability (Maynard Smith and Price 1973; Maynard Smith 1982) enable one to
 expand Hamilton's arguments of inclusive fitness to cases involving more than
 two interacting individuals. Our analysis of the evolutionarily stable strategy
 (ESS) model of multiple help, though apparently lacking some of the simplicity of
 Hamilton's original arguments, preserves much of the simplicity of his results.

 An important quantitative result, which we hope contributes to the unification
 of the theory of kin selection, is that if Hamilton's condition for a one-to-one
 altruism is not met (i.e., if the ratio of the helper's risk to the recipient's benefit is

 Am. Nat. 1988. Vol. 132, pp. 550-566.
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 larger than the coefficient of relatedness), full selfishness is also the ESS when

 more than one potential helper is involved. If Hamilton's condition is satisfied, the

 only evolutionarily stable strategy is one that results in choosing to help, but only

 with some positive probability. Unlike the one-to-one case, in which this probabil-

 ity is always one (i.e., if Hamilton's condition is met, the ESS is full altruism),

 cases involving more than one potential helper rarely have full altruism as the

 ESS; most often the ESS is a mixed strategy of altruism and selfishness.

 We present cases in which immediate help is needed, and each potential helper
 must independently decide whether or not to help. These models can also be

 applied to situations in which both the ability to help and the cost for it must be

 developed in advance (e.g., the case of physiological altruism). (Cases of delayed

 help are discussed in Motro and Eshel 1987. In these situations, each potential

 helper can wait in hope that another relative will volunteer; yet any delay de-

 creases the efficiency of the help given to the recipient.)

 The ESS model is accompanied by rigorous analysis of a simple genetic model
 of a one-locus, random-mating diploid population. The results of this simple
 genetic treatment coincide (at least in the case studied) with those of the ESS
 model, which is based on arguments of maximizing inclusive fitness.

 IMMEDIATE MULTIPLE HELP: HAMILTON'S CONDITION FOR THE EXISTENCE

 OF AN EVOLUTIONARILY STABLE MIXED STRATEGY

 Assume a group of n symmetrical relatives, and let r (where 0 < r < 1) be the
 degree of relatedness (measured by Wright's coefficient of relationship) between

 any two of them. We further assume that one individual in the group needs help,

 and that help may be given by k of the n - 1 other individuals in the group (k = 0,
 1, . .. , n - 1). If k is greater than zero (at least one relative volunteers to help),

 the risk for each helper is a positive Ck, and the gain for the individual in need is

 bk (risk and gain measured in terms of survival probability). For convenience,

 we define co and bo equal to zero. Quite generally, one can assume that ftk} is
 a nonincreasing sequence and that {bk} is nondecreasing.

 We consider the simple case in which the decision whether or not to offer help is
 made by each potential helper before information about other relatives' behavior

 is available. If p (where 0 ? p ? 1) is the probability of a potential helper's offering
 help, then we seek a value of p that is an ESS, that is, a value of p that, when

 adopted by a large enough part of the population, becomes advantageous in terms
 of inclusive fitness over any alternative strategy adopted by the minority (May-
 nard Smith and Price 1973).

 The concept of ESS can be directly applied to population biology only if random
 encounters among individuals in the population are assumed (Eshel and Cavalli-

 Sforza 1982). Then the probability of encountering a rare mutant is negligible both
 for a wild-type individual and for another identical mutant. Under this assump-
 tion, a necessary condition for a strategy p to be an ESS is that it must be a Nash

 solution of the game; namely, no mutant player that is the only mutant in its group
 can do better than a typical individual in a group consisting entirely of ESS players
 (Maynard Smith 1974). This is apparently not the case for situations involving
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 family structure, which is an inevitable consideration in inclusive-fitness argu-
 ments. The probability that a mutant will be encountered by another identical
 mutant may not be negligible even when the mutation is very rare, a difficulty

 ignored by many authors attempting to combine inclusive-fitness arguments with
 ESS techniques.

 The situation is different if we concentrate on evolutionary stability against
 mutations of a limited probabilistic effect, namely, against all changes from p to p'

 where lp - p'l is small enough. Indeed, irrespective of the real (biological) cause
 of change, such mutations can always be interpreted as mutations having low
 penetrance; that is, the mutant is assumed to adopt the wild-type strategy p with
 probability 1 - E, whereas with a small probability e > 0 it adopts a different fixed

 strategy p (possibly, but not necessarily, one of the two pure strategies). If this is
 the case, then any individual exhibiting the new strategy p is likely to be the only
 one in its family group, though not necessarily the only one carrying the mutant
 allele. Hence, the mutant allele has an advantage if the success of a mutant
 strategy executed by one individual in its family group is higher, on the average,
 than that of a wild-type family. (Success is measured in terms of inclusive fitness.)

 Note that in order to be stable against any mutant strategy, the strategy p must
 be stable against all mutants of limited probabilistic effect. The opposite may not,
 theoretically, be true. (It is true, however, for the special cases checked below by
 exact genetic models. For further difficulties concerning genetic analysis of
 inclusive-fitness arguments, see Cavalli-Sforza and Feldman 1978; Uyenoyama
 and Feldman 1981; Karlin and Matessi 1983; Matessi and Karlin 1984.)

 If we consider only mutations of limited probabilistic effect, and if absolute
 selfishness is the prevailing strategy in the population (at least for similar situa-
 tions), then any mutant volunteering to help its relative is likely to be the only one

 in its group. Hence, the risk it takes is cl, and the gain for the relative in need is bl.
 The helper's net gain, in terms of inclusive fitness, is rb, - cl, and its tendency to
 help is likely to be selected against if this is a negative value. Consequently, we
 have the following result.

 Result 1: The absolutely selfish strategy not to help is an ESS if

 rb, < c1 (1)

 and only if this condition is satisfied as at least a weak inequality. This is exactly
 Hamilton's condition for selfish behavior between two relatives.

 However, if absolute altruism is the prevailing strategy in the population (at
 least for similar situations), any mutant failing to offer its help is again likely to

 be the only one in its group. Its gain is c,- 1; the damage caused to its relative in

 need is bnI - bn - 2; and the additional risk to each of the helpers in the group is
 Cn-2 - Cn-I. Thus, the net gain to the defector in terms of inclusive fitness is
 Cn- I - r[bnI - bn-2 + (n - 2)(Cn-2 - Cn-01-

 Result 2: The absolutely altruistic strategy of always helping is an ESS if

 r[bn-I - bn-2 + (n - 2)(Cn-2 - Cn-1)] > c,_-1 (2)

 and only if condition (2) is satisfied as at least a weak inequality.

 If n = 2, inequality (2) becomes rb, > cl, which is the converse of inequality (1).
 Thus, if n = 2, the optimal strategy is always helping (if rb, > cl) or never helping
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 (if rb, < cl). (Either one can be the optimal strategy when rb, = c1.) As we shall
 show, this is not the case if n > 2.

 For convenience, we shall assume a few simplified forms of the risk function

 {Ck} and the gain function {bk}.

 Assumption C1: For all k = 1, 2, . . .,n - 1, Ck = c > 0 (i.e., the risk for each
 volunteer does not depend on the number of volunteers). This is a natural assump-

 tion when, for example, potential helpers are asked to jump into a stormy sea to

 save a drowning relative.

 Assumption C2: For k = 1, 2, . . . , n - 1, Ck = clk (where c > 0). This
 assumption is valid, for example, for cases in which one of k volunteers (if there

 are any) is chosen at random to do the risky job. This assumption is also valid

 when a certain amount of quantitative help is needed and each of k volunteers

 must provide the same fraction of that amount.

 Assumption B1: For k = 1, 2, ... , n - 1, bk = 1 - vk(where 0 c v < 1). Each
 helper has the same positive chance to succeed, 1 - v, independently of other
 helpers. The individual in need dies if and only if no helper succeeds.

 Assumption B2: For k = 1, 2, ... , n - 1, bk = 1. This is a special case of B1,
 where v = 0. Assumption B2 means that a single volunteer is sufficient to save the

 life of the relative in need.
 Assumption B3: For k = 1, 2, ... , n - 1, bk = kb (where b > 0) (additivity of

 benefit).

 Assumption B4: As k increases, so does bk+1 - bk (superadditivity of benefit;
 see, e.g., the case of the fig wasps; Cohen and Eshel 1976; Galil and Eisikowitch
 1968).

 Considering assumptions C1 and B3 (which we call model CI-B3), condition (2)
 for stability of the pure strategy of absolute altruism becomes rb > c, which is
 exactly the condition for instability of the pure strategy of absolute selfishness.

 However, this finding is not surprising, since with these two assumptions neither
 the helper's risk nor its gain depends on the behavior of other individuals in the
 group.

 For the model CI-B4, one can easily show that at least one of the pure strategies
 (and possibly both) is an ESS.

 More interesting (and maybe more common) are situations in which helping
 becomes less needed as the number of helpers increases. In these situations,
 critiques of Hamilton's theory expect no altruism (as long as n > 2), since waiting
 for others to do the job is always more advantageous than volunteering. Examples

 for such situations are models Cl-BI, CI-B2, and C2-B2; we consider the first two.
 For Cl-BI, condition (1) becomes r(1 - v) < c, whereas condition (2) becomes

 rvn -2( I- v) > c.

 Result 3: For the model C1-B , in which each helper takes the same risk c and
 has the same chance of saving its relative's life, 1 - v, independently of others,
 the pure selfish strategy is an ESS if

 r(1 - v) < c, (3)

 and the pure altruistic strategy is an ESS if

 rvn 2(1 - v) > c. (4)
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 If rv'-2(1 - v) < c < r(1 - v), then no pure strategy is an ESS. In this case,
 since there are only two pure strategies, we know (Eshel 1982) that there must be
 a unique evolutionarily stable mixed strategy.

 Moreover, in the special case C1-B2 for which only one helper is needed to save

 the relative's life, condition (2) for stability of the pure altruistic strategy is never

 satisfied if n is greater than 2. Hence, in this case, Hamilton's condition of r(1 - v)
 > c is necessary and sufficient for the evolutionary stability of a mixed strategy,
 characterized by a probability p (where 0 < p < 1), of helping the relative in need.

 A mixed ESS cannot occur if n equals 2 (the case originally treated by Hamil-
 ton), but it appears to be quite common if n is greater than 2. As we see,

 Hamilton's condition for pure altruism when n equals 2 may serve as a criterion
 for the existence of a mixed selfish-altruistic ESS when n is greater than 2.

 ANALYSIS OF THE EVOLUTIONARILY STABLE STRATEGY

 Let the strategy of each individual in a group of relatives be denoted by a
 number p (where 0 c p c 1), which is the probability of this individual's choosing
 to help a relative in need. Let n, r, Ck, and bk also be defined as in the preceding
 section.

 For any potential helper, if there are exactly k other volunteers (k = 0, 1, . . ..

 n - 2), then volunteering to help entails a risk to self of Ck+, , an increase of
 bk+1 - bk in the benefit to the relative in need, and a decrease of Ck - Ck+ 1 in
 the risk to each of the k other helpers. Thus, if there are exactly k other volun-
 teers and if the potential helper does provide help, then the inclusive fitness
 of the potential helper is

 Qk = Ck?+1 + r[bk+ 1 - bk + k(Ck - Ck+ 1)] (5)

 If the common strategy in the population is p, the probability that there will be
 exactly k other volunteers is

 lTk = ( k)pk(l - p)n-2-k (6)

 Hence, the unconditional inclusive fitness for a volunteer is

 n-2

 Q(p) = E fk1Tk, (7)
 k=O

 and specifically,

 Q(O) = -c1 + rb1, (8)

 l(l) = -cn- I + r[bn- I - bn-2 + (n - 2)(Cn-2 - Cn- 1)] (9)

 If pure selfishness (p = 0) is the common strategy, then condition (1) for the
 disadvantage of altruism follows from equation (8). Likewise, condition (2) for the
 evolutionary stability of altruism follows from equation (9). More interestingly, a
 mixed strategy (O < p < 1) is a Nash solution of the population game if and only

 if Q(p) = 0. If fQ(p) > 0, then individuals having the strategy of pure altruism
 (p = 1) are at an immediate advantage (in terms of inclusive fitness). If fl () < 0,
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 then the strategy of pure selfishness (p 0 O) is advantageous. If fQ() 0, no
 single individual can gain by having a different strategy.

 We further claim that a mixed Nash solution (O < p < 1), if it exists, is an ESS

 if and only if the curve fl(p) intersects the p-axis from above at the point where

 p = .
 Assume that a small fraction of the population (e > 0) adopts a strategy y > p.

 The probability that a random relative will volunteer to help is p' = (1 - e)13 + ey
 > p. If fl(p) intersects the p-axis at p from above, then the inclusive fitness
 resulting from the altruistic act is fQ(p') <fQ(p) = 0. Thus, helping is disadvanta-
 geous, and p is more advantageous than y. Likewise, if y < 3, then p' < p, fQ(p')
 > Q~(p5) = 0, helping is advantageous, and p is again more advantageous than y.
 Hence, p is an ESS.

 Moreover, using the same argument, one can show that if fl(p) does not inter-

 sect the p-axis from above (at p), then p is not an ESS.

 If we consider assumption Cl (constant risk for the helper), equation (7) be-
 comes

 n -2

 Ql(p)= -c + r 3 (l k )Pk(l - P)nl2k (bk+ I - bk)* (10)

 Thus, for the constant-risk additive-benefit model C1-B3, we get (not surpris-
 ingly)

 l(p)= -c + rb, (11)

 which is either always positive or always negative, depending only on Hamilton's

 condition. (Indeed, this is a degenerate case of multiple help, since neither the
 helper's risk nor its gain depends on the number of other helpers.)

 If superadditivity of benefit is assumed (model CI-B4), then fQ(p) is an increasing
 function of p. Hence, depending on the parameters, helping can be either always

 disadvantageous or always advantageous, or (for a nondegenerate set of parame-

 ters) it can be advantageous only if p, the tendency of other individuals to help, is

 large enough. No mixed ESS can exist in this model. The same results are

 obtained for the models C2-B3 and C2-B4. (Note the similarity of these results with

 those obtained by Cohen and Eshel [1976], who did not use any kin-selection
 arguments. For a prediction of such a similarity between compatible models of kin
 selection and group selection, see Matessi and Jayakar 1976.)

 We find it more interesting, however, to lose some generality and concentrate

 on the situation that has originally motivated this work, namely, the model C -BI.
 In this case, the need for one's help decreases as the number of other helpers

 increases, but the cost of altruism remains the same. A special case is model Cl-
 B2, in which the help of a single helper is sufficient and the advantage of having
 someone else do the job is obvious.

 Under Cl-Bl, equation (6) becomes

 fl(p) = -c + r(I - v)[ - p(l - V)]n-2 (12)

 which is a decreasing function of p. We already know from result 3 that in this

 model only one pure strategy, at most, can be an ESS. If rv - 2(1 - v) < c <
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 r(1 - v), no pure strategy is evolutionarily stable and a single mixed ESS exists,
 which is the solution of fl(p,) = 0, namely,

 = {1 - [c/r(1 - v)]' /(n2)}/1 - v). (13)

 Thus, J increases with r and decreases with c and n. Indeed, J tends to zero as n
 approaches infinity, not a surprising finding, since it agrees with both daily ex-
 perience and documented results in the social sciences.

 Less obvious is how the number of potential helpers affects the chances of the

 individual in need of being saved.

 If Hamilton's condition for help between two relatives does not hold (i.e.,

 if r(1 - v) is smaller than c), the ESS is the pure selfish strategy. Hence, the

 probability of getting help is zero, independent of the number of potential helpers.
 If Hamilton's condition holds, we discern between two possibilities. If, on the

 one hand,

 n ? 2 + ln[c/r(1 - v)]/lnv f

 (n is larger than 2, since both v and c/r(1 - v) are less than one), then
 rvn-2(1 - v) - c and p = 1; hence, the probability of getting efficient help is

 Fn = 1 - vn, (14)

 which is an increasing function of n.

 If, on the other hand, n is greater than n, then j is given by equation (13) and we

 get

 n -I

 n= > (1 - Vk)(n - 1 pk(l p)fl1 (
 k=O (15)

 1_ [1 - ^(1 - v)]n-l = 1 - [c/r(1 - v)] + l1(n

 which is a decreasing function of n.
 The probability of getting help is, therefore, maximal for some "optimal" group

 size n*, which is either [n] or [n] + 1. It tends to the positive value 1 - c/r(1 - v)
 as n approaches infinity. For the possible effect of such an argument on the
 evolution of family (or group) size in nature, the reader is referred to Parker and
 Hammerstein (1985). Note, however, that in their (quite different) model, the
 smaller the group size, the larger the chance of getting help. In the present model,
 the optimal group size, n*, increases from 2 to infinity as v increases from 0 to 1 or
 as c decreases from r(1 - v) to 0.

 In the special case Cl-B2, where v equals 0, the condition rvn-2(1 - v) ? c for
 pure altruism is never satisfied when n is larger than 2, and Hamilton's condition is
 then a necessary and a sufficient condition for a mixed strategy. In this case, the
 probability Fn of getting efficient help decreases from 1 when n = 2 to 1 - clr as n
 approaches infinity.

 Since risk and gain are frequency-dependent for each helper, a generalized
 Hamilton's rule can be defined, which considers the expected value of rb - c.
 Using this generalized criterion, the mixed ESS, j, can be obtained by solving the
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 equation E(rb - c) = 0. (This clarifying interpretation was suggested to us by one
 of the reviewers.)

 A GENETIC MODEL FOR SIB-TO-SIB MULTIPLE HELP

 Consider a diploid population and broods of a fixed size, n. An available sib will
 volunteer and help its brother in need according to its genetically determined,

 single-locus strategy.

 Let AA be the wild type and let p be the probability that an individual of this
 type will help its sib in need. Let a be a rare mutation; Aa individuals have

 probability y #A p of helping the sib in need.
 Note that in the kin-selection models of Cavalli-Sforza and Feldman (1978) and

 of Uyenoyama and Feldman (1980, 1981), the construction of the fitness functions
 implicitly assumes a single donor and a single recipient. Here we assume that all
 sibs in the brood are available when needed. (This assumption is relaxed in the
 next section.) We also assume that, in each generation, exactly one individual in a

 brood needs help. (This simplifying assumption is relaxed in the section "Multiple
 Help with Repetition and the Evolution of Reciprocal-like Altruism.")

 We consider the model CI-B 1, treated in the preceding section. A typical brood
 consists of AA individuals exclusively. For any one of them (call it I), the

 probability of being the one in need is 1/n, and it has a probability [lI - p(l -
 v)]'" -1 of not getting efficient help and therefore dying. If someone else needs help
 (the probability of that event is 1 - 1/n), the probability that 1 will volunteer is p
 and the probability that I dies in its attempt to help is c. Hence, for any sib in the
 brood, the probability of dying is

 1 - wl = [1 - p(l - v)]"-'n + (1 - 1/n)pc. (16)

 If the frequency e > 0 of allele a is small enough, the viability of a random AA
 individual is w1 + o(E). The rare allele a is usually carried (with probability 1 -
 o(E)) by a heterozygote Aa, which is an offspring of a mating of AA and Aa. The
 probability that Aa will have exactly k Aa brothers (and n - 1 - k AA brothers) is
 (ak1) 1/2-1. Hence, the probability that an individual of type Aa will die either
 from a lack of help or in an attempt to help a sib is

 n - 1

 1 2Y) => (fl - 1 y(l - V)]k[l - p(l - -I-kIn

 + (1 - 1/n)yc}12`1 (17)

 = [1 - (y + p)(l - v)12]'`'/n + (1 - 1/n)yc.

 The viability of a random Aa is W2 + o(E). Natural selection operates for Aa,
 when it is rare, if wx < W2, and against Aa when wx > W2. But W2(P) = w1, and at
 y = PI

 ds2(Y)1dYjY= p= (1 - 1/n) {(1 - v)[1 - p(l - v)],,- 2I2 - c} = (1 - lln)fQ(p),
 where fl(p) is defined as in equation (12), and r = 1/2.
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 If ?/2(1 - v) < c, then fl(p) < 0 for all 0 ? p ? 1. Hence, W2(Y) is a decreasing
 function of y at y = p.

 If ?/2v -2(1 - v) > c, then fl(p) > 0 for all 0 ? p c 1, and W2(Y) increases at
 y = p.

 If ?/v2(1 - v) < c < ?/2(1 - v), then fl(p) < 0 (and W2(Y) decreases at y = p) if
 p > p; but fl(p) > 0 (W2(Y) increases at y = p) if p < p, where p is the ESS defined
 in equation (13). If p = p, then dW2/dy = 0 at y = p. But

 d202/dy2 = -(1 - 1/n)(n - 2)[(1 - v)/2]2 [1 - (y + p)(l - v)/2]"3 < 0.

 Hence, 02(Y) has a global maximum at y = P; w2(Y) < 2(P) = ol for all y # p.
 If 02(Y) decreases at y = p, then a mutant with a tendency to help y slightly

 larger than p is selected against, whereas if y is slightly smaller than p, Aa has a

 selective advantage. The reverse holds if W2(Y) increases at y = p. In both cases,
 natural selection favors mutations that cause their carrier to choose a strategy

 slightly closer to the ESS. If p = p, natural selection operates against any mutant
 with a different strategy.

 Result 4: The ESS of the preceding section is 0 if ?/2(1 - v) < c; 1 if 1/2v" -'(1 - v)
 > c; and J, defined in equation (13), if 1/2v- '(1 - v) < c < ?/2(1 - v). This ESS has
 the property of evolutionary genetic stability (EGS; see Eshel and Feldman 1982;
 Eshel 1985). It is the only strategy that, when fixed in the population, is immune to

 any mutation that determines a different tendency to help. Moreover, if the
 population is fixed on a different strategy, that strategy is always unstable with
 respect to mutations that determine (at least in a heterozygous form) a strategy

 slightly closer to EGS.

 MULTIPLE HELP WITH A RANDOM NUMBER OF HELPERS: THE ESS MODEL

 In the previous sections, we assumed that the number of potential helpers is

 constant (n - 1, where n is the group size). The analysis remains virtually intact if
 the number of potential helpers changes from one situation to another, provided
 that each time every potential helper is fully aware of that number. The ESS then
 determines different helping probabilities for different situations, depending not
 only on the risk, c, but also on the actual number of potential helpers.

 In this section, we consider a situation in which the number of potential helpers
 (e.g., the number of relatives hearing the cry for help) is a random variable, X. The

 decision by each of them to provide help or not must be made before any in-
 formation on X is available to the potential helper.

 More specifically, we assume that the group of potential helpers is drawn at
 random from a larger population of relatives, that each relative has the same

 chance of being included in that group (not necessarily independently of others),
 and that the size of the group, X, in each situation is independent of past events.

 Let P(X = n) = ran (n = 0, 1, 2, . . .) be the probability that the number of
 potential helpers is n, and let +(s) denote the generating function of X such that

 00

 +(s) = E(sX) = 3 1TSn
 n =O
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 As we have seen, the decision of each potential helper to offer its help or not
 heavily depends on the number of potential helpers present. In the situation
 analyzed here, however, the only information available to the decision maker is

 the probability distribution of the number of potential helpers, X, and the realiza-
 tion of the event E that the decision maker itself belongs to that group. But from
 the assumption that any individual in the larger population of relatives has the
 same probability of being included in the random group of potential helpers, it
 immediately follows that the a priori probability that one belongs to such a group
 is proportional to the group size n, say, On. Hence,

 00

 P(X = nIE) = OnP(X = n) E OkP(X = k) = nirl/E(X).
 k=O

 The appropriate generating function for the conditional distribution of X, given
 E, is, therefore,

 00

 b(s) = E(sX/E) = E E(X) E(X)

 Considering the model Cl-BI, we already know that if there are exactly n po-
 tential helpers including I, the decision maker, the inclusive fitness of the decision
 maker if it volunteers to help is (eq. 12)

 Qn +l(p) = -c + r(1 - v)[1 - p(l - V)]n - I
 Hence, if an individual volunteers, its unconditional inclusive fitness is

 fQ(P) = fn+1(p)P(X = nIE) = -c + r(- v)[I - p(l - v)] (18)

 Since +'(1) = E(X), we have

 fQ(O) = -c + r(1 -v)

 and

 fQ(1) = -c + r(1 -v)4'(v)/E(X)

 The inclusive fitness fl(p) is a decreasing function of p, which means that the
 higher the willingness of others to help, the less advantageous it is for an individ-
 ual to volunteer. Consequently, the system maintains one and only one ESS,
 either pure or mixed.

 Result 5: (a) Hamilton's condition that c < r(1 - v) is, in this case, a necessary
 and sufficient condition for having some altruistic behavior (i.e., for having the
 ESS j > 0).

 (b) The condition for pure altruism is always strictly stronger than Hamilton's
 condition, namely, c < r(1 - v)?'(v)/E(X).

 (c) If r(1 - v)+'(v)/E(X) < c < r(1 - v), then the (unique) ESS, 5, is mixed.
 This ESS is the solution of

 -^ -(1 - v)] = cE(X)/r(1 - v). (19)
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 If the number of available helpers is a random variable, pure altruism can be
 maintained even under the assumption that v = 0 (provided that c is small
 enough); this is not the case when the number of available helpers (n > 2) is fixed.

 An example of the ESS model for multiple help with a random number of
 helpers is the situation in which the number of available helpers has a Poisson

 distribution. Assume that rn = e - X XVn n!. This corresponds to a very large group
 of relatives (e.g., a tribe) that move around such that each of them has a small

 chance of being available when needed, independently of others. (Here, A is the
 expected number of available helpers.)

 In this case,

 ?~(s) = e'(S

 = XeX(s 1) (20)

 fQ(p) = -c + r(1 -v)e-xP(lv)

 The condition for full altruism is

 c < r(1 - v)4+'(v)/E(X) = r(1 - v)e-A(1-v). (21)

 If A approaches infinity (i.e., the population of relatives is dense), the right-hand
 side of equation (21) tends to zero and the condition for full altruism is never
 satisfied. If, however, A approaches zero (i.e., the population of relatives is
 sparse), equation (21) tends to coincide with Hamilton's condition.

 The ESS is mixed if r(1 - v)e X(v) < c < r(1 - v), and it is then

 = [l/X(l - v)] ln[r(1 - v)/c]. (22)

 The probability in this case that an individual in need will get help is

 F > Tn{1 [1 -j(1 - v)]n} = 1 -e-Ap(l-v)
 n=O (23)

 = 1 - c/r(l - ,

 which is independent of X.

 Result 6: Let Hamilton's criterion for altruism, c < r(1 - v), hold, and let the
 number of available helpers be distributed as a Poisson random variable with ex-
 pectation X.

 (a) Then the evolutionarily stable probability of altruism (p) is always positive.
 (b) If the relatives' population is sparse enough (i.e., if X < ln [r(1 - v)/c]/(1 -

 v) X*), full altruism is the only ESS in the population. In this case, the
 probability that an individual in need receives help is

 Fx = 1 - e-A(l-v)

 which is an increasing function of X. This result is identical to that obtained by
 Boorman and Levitt (1980) in their "one-one" combinatorial model.

 (c) If the relatives' population is dense (i.e., if X > X*), the ESS is mixed. It is a
 decreasing function of X, tending to zero as X approaches infinity.
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 Quite surprisingly, however, in this case the probability that an individual in
 need will get help does not change with X. This result differs from that obtained
 for a fixed number of potential helpers in the above "Analysis of the Evolu-
 tionarily Stable Strategy." In that case, the probability of getting help is a
 decreasing function of the number of potential helpers (which, as it increases,
 tends to a limit that is exactly F of eq. 23).

 MULTIPLE HELP WITH A RANDOM NUMBER OF HELPERS: A SIMPLE GENETIC MODEL

 Assume a diploid population divided into large groups (each of size N + 1) of
 relatives. Let r be the degree of relatedness between any two individuals in a
 group, and assume that mating is random between individuals belonging to differ-
 ent groups. Suppose that in each generation exactly one individual in each group
 needs help. Let p (p << 1) be the probability that any other individual in the group
 is available when needed. Thus, the number of available helpers is, approxi-

 mately, Poisson-distributed with X = Np. We consider model C1-BI and assume
 that X is not smaller than X* of the preceding section.

 We further assume that the tendency to help is genetically determined by a
 single locus, which has a common allele A and a rare mutation a (at a small but
 positive frequency, E > 0). Let p be the probability that an available AA individual
 will help its relative in need, and let y 7& p be that strategy for Aa.

 A random AA individual has relatives of type AA with probability 1 - o(E).
 If this individual is the one who needs help (the probability of that event is

 1/[N + 1]), then its probability of not getting efficient help and dying is

 00

 > e-X" [1 -p(l - v)]n/n! + 0(E) = e-XP(l-v) + o(E).
 n=O

 The probability that this individual will lose its life while helping a relative in need
 is ppc. Hence, the death probability of AA is

 1 - = e`P(l-v)/(N + 1) + [1 - 1/(N + 1)] ppc + o(E)

 = (e-XP(l -v) + Apc)/(N + 1) + o(E).

 A random Aa individual comes from a group in which the proportion of AA's is,
 approximately, 1 - r and the proportion of Aa's is r. (Here we used both the
 assumption of random mating and the assumption of large groups of r relatives.) If
 Aa needs help, it will die because of lack of help with probability

 exp {-X(1 -v)[ry + (1 - r)p]} + o(E).

 The total death probability of Aa is

 1 - ((Y) = e-1 (l-v)[iy+(l -r)P]/(N + 1) + [1 - 1/(N + 1)] pyc + 0(E)

 = (e`(l -v)[iy+(l-r)p] + Ayc)/(N + 1) + 0(E).

 Natural selection operates for (against) allele a, when rare, if W2 > WI (w2 < W1)-
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 Employing analysis similar to that for sib-sib multiple help, we arrive at the
 following result.

 Result 7: The ESS probability 5, defined in equation (22), has the property of
 evolutionary genetic stability (see result 4).

 MULTIPLE HELP WITH REPETITION AND THE EVOLUTION

 OF RECIPROCAL-LIKE ALTRUISM

 Trivers (1971) was the first to suggest that reciprocation provided the basis for
 the evolution of altruism. If encounters are frequent enough, then helping an
 individual in trouble may be advantageous to the donor in the long run, provided
 that the recipient tends to repay kindness in kind once its help is needed. The
 possibility of future encounters can also increase the level of mutual help estab-
 lished between relatives to a higher degree than expected because of their respec-
 tive relatedness (Eshel and Cohen 1976; Eshel and Motro 1981). This higher level
 of mutual help does not require the existence of gratitude or even of memory; it is
 a direct consequence of kin selection itself. If some amount of help is expected,
 following simple tenets of kin selection, from individual A toward B, then (by the
 same argument) the same amount of help is expected from B toward A. Thus, for
 A, the death of B means not only the direct loss of their common genes, but also
 the loss of any future help from B. Analysis of mutual help between two individ-
 uals has shown (Eshel and Motro 1981) that a high degree of mutual help may be
 established between distantly related (and, sometimes, even unrelated) individ-
 uals when interactions are frequent.

 In this section, we consider the possibility that the situation in which an
 individual needs help may happen again in the future (not necessarily with the
 same players), and we see how this possibility affects the ESS of multiple help.

 We restrict our analysis to a situation in which the members of a large group of
 relatives move around, such that each of them has a small chance of being
 available when needed. Hence, the number of potential helpers has approximately

 a Poisson distribution. We consider the model Cj-B2. (Treatment of the more
 general model Cl-B, is technically more complicated, and no qualitatively new
 results are obtained by that generalization.)

 Assume now that for each individual in the population there is a small probabil-
 ity ox that it will be the next one to need help (in a similar future situation). The
 death of a relative in the present situation entails a small decrease in the expected
 number of potential helpers in the future, from pN = X to p(N - 1) = A - p (using
 the same notation as in the preceding section). Consequently, if p, the tendency in
 the population to help a relative, is 0 c p c 1, the death of a relative increases the
 death probability of an individual in need from exp( - Ap) to exp[ - (A - p)p]. The
 probability that an individual will die in helping any of its relatives in the future
 remains oppc. Hence, the probability of death while helping in a future situation
 decreases, with the death of the individual in need at the present situation, from
 Notppc to (N - l)xppc. Thus, with the death of the relative in need, the probabil-
 ity of death for each of the N remaining individuals increases by

 ot(e-(X-P)P - e-XP) - [oXtpc - ox(X - p)pc] otpp(eP - c).
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 The total loss to I (in terms of inclusive fitness) as a result of its relative death is

 f3 = r + [1 + r(N - l)]opp(e-XP - c).

 The total loss to I (in terms of inclusive fitness) due to its own death is

 y = 1 + rNo pp(e - XP - c) .

 Under the assumption C1-B2, if I volunteers to help, the survival probability of

 the individual in need increases from 1 - e - (X - P)P to 1, while I has a probability
 c of losing its life in that act. Hence, the inclusive fitness of 1, if it volunteers, is

 Q(P) = e-(Xp-PI - cy eX-P 3 - c(24)

 -c + re -P + opp(eX-P - c)[(l - r)eX-P + rN(eX-P - c)].

 As an immediate result, Hamilton's condition for the stability of p = 0 (full

 selfishness) remains unchanged; r < c. (Indeed, if nobody helps, there is no point
 in saving someone else's life in the hope that that individual will save your life or

 your relative's life in the future.)

 If, however, a mixed ESS, pa, exists (where 0 < pc < 1), then fj(pj) = 0 and
 a(p)alapip=p < 0 (see "Analysis of the ESS"). From equation (24) it is clear that
 if flO(p) = 0, then exp(- Ap) - c > 0 (and rexp(- Ap) - c < 0). Hence, by using
 the implicit-function theorem, we get dp,ldot > 0.

 Result 8: If not zero, the evolutionarily stable probability of altruism is an
 increasing function of ox, the probability of a need for help in the future.

 Our analysis of mutual help with repetition between two individuals (Eshel and
 Motro 1981) indicated the possibility of more than one ESS, with each ESS

 established at a different level of altruism. In the case of multiple help with
 repetition, this possibility also exists. Moreover, even in the sub-Hamiltonian

 situation r < c, a positive ESS can be maintained in addition to the ESS of pure

 selfishness (which always exists in the sub-Hamiltonian case). To show this,

 choose any positive value of po, keep the parameters r, c, p, and cx fixed (provided
 that r > 0), and let A approach infinity. From equation (24) we get

 lim (l/X)f1,(po) = otporc2 > 0.
 X-Aoo

 Hence, for sufficiently large X, fl(po) is greater than zero. Thus, either fl(p)

 intersects the p-axis from above at some point p 1 (Po < p 1 -- 1) or fl(p) is greater
 than zero for all po < p c 1. In the first case, p I is a positive ESS, whereas p = I is
 an ESS in the second case. In both cases, if r < c, p = 0 is also an ESS.

 The possibility of more than one ESS distinguishes the case of multiple help

 with repetition from the case without repetition. In the latter case, fQ(p) is a

 decreasing function of p, which entails the existence of only a single ESS.

 A case of special interest is that of mutual help among nonrelatives. Putting

 r = 0 in equation (24) yields

 fl(p) = -c + oxppeX-P (eX-P - c) (25)

 and

 ft'(O) = c <
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 absolute selfishness is, indeed, stable. Yet, for a sufficiently small (but positive)

 value of c,

 f^(1) = -c + oxpe A (ee C) > 0.

 Hence, full altruism can also be an ESS.

 If c < exp( - X), then f' (1) < 0 and fJ(1) > fQO(O). Thus, there exists p (O <jp <
 1) for which fLt(p) obtains its maximal value. By choosing c small enough (but not

 too small), we can get f1(jp) > 0 and fJ(1) < 0. Hence, there is a value j5 (j < j <
 1) for which ft(p) intersects the p-axis from above. Thus, j is a mixed ESS.

 Using the implicit-function theorem, we get that j is an increasing function of cx
 and p and a decreasing function of c and X.

 Result 9: The evolutionarily stable probability of altruism within a group of

 nonrelatives is an increasing function of ox, the probability of future need, and of p,
 the probability that a group member will be available when needed. As expected,
 the ESS is a decreasing function of the risk, c, but, quite interestingly, it is also a
 decreasing function of X, the parameter that reflects the intensity of meetings
 within the group. Since X equals Np, the ESS is indeed a decreasing function of
 group size; but however big the group is, altruism can be maintained, provided
 that c is small enough.

 DISCUSSION

 The possibility that an individual in trouble can be saved by each of several

 relatives has long been considered a criticism of Hamilton's theory of kin selec-
 tion. The criticism arises because if Hamilton's condition for altruism between

 two relatives is fulfilled, any potential helper can always benefit from leaving the
 risky task of saving the individual in need to any of its other relatives. Hence,

 since desertion is advantageous, it seems that selfish behavior will always prevail
 in such situations.

 As shown in this paper, the weakness of this argument lies in its ignoring the
 possibility of mixed strategies. Indeed, if Hamilton's condition for altruism be-
 tween two relatives is not satisfied, full selfishness is also the only evolutionarily

 stable strategy for the case of more than one potential helper. However, the
 fulfillment of Hamilton's condition in the one-to-one situation implies, in the

 multiple-help case, the evolutionary stability of a mixed strategy of altruism and
 selfishness, that is, of a strategy by which help is provided only with a certain
 positive probability.

 As expected, the evolutionarily stable probability of altruism increases with the
 degree of relatedness, it decreases as a function of the risk involved in providing
 the necessary help, and it also decreases as a function of the number of potential
 helpers (it tends to zero as the number of potential helpers tends to infinity). If
 Hamilton's condition holds and if the population is fixed on the ESS, the probabil-

 ity that the individual in need will be saved is maximal for a certain group size.

 Unlike the evolutionarily stable probability of providing help, the probability of
 getting help does not tend to zero as the number of potential helpers tends to
 infinity.
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 If a situation in which an individual needs help can be repeated in the future (in
 such a way that each group member has the same small chance of being the next
 one to need help), the evolutionarily stable probability of altruism increases as the
 chance of future repetition increases. In this case, a positive evolutionarily stable
 probability of altruism can exist even among nonrelatives. The existence of
 mutual help in a group of nonrelatives requires neither any tendency for gratitude
 among group members nor any memory or ability to distinguish between group
 members (though they must recognize a group member as such). Note, however,
 that if Hamilton's condition for one-to-one altruism does not hold, then even if
 some positive probability of altruism is evolutionarily stable, full selfishness is
 always stable. One must still consider how (and whether) a population (or a group)
 can evolve from the selfish evolutionarily stable state into the (at least partly)
 altruistic state (see, e.g., Axelrod and Hamilton 1981).

 SUMMARY

 In situations involving a single relative in distress and several potential helpers,
 the advantage of leaving the risky job of aiding the relative in need to any of the
 other potential helpers is quite obvious. Hence, even if Hamilton's condition for
 altruism in the one-to-one situation is satisfied, it might seem that altruistic be-
 havior would not evolve if there is more than one potential helper.

 In this paper we investigate the evolutionarily stable strategy (ESS) of helping
 behavior in situations involving several potential helpers and a necessarily instan-
 taneous response. The main result is that if Hamilton's condition is met, the ESS
 is usually a mixed strategy of altruism and selfishness, with a decreasing (yet
 positive) probability of helping as the number of potential helpers increases.
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