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1. INTRODUCTION 

The theory of kin selection, as developed by Hamilton (e.g., 1964, 1970) 
stems from the fact that in a sexually reproducing population, the genotype 
of a progeny of an individual is not necessarily identical to the genotype of 
either parent. Thus natural selection cannot operate through the preservation 
of the most tit type. Instead, it can only be expressed in terms of changes in 
gene frequencies. Such changes, as suggested by Hamilton, are likely to be in 
favor of those genes which, by their effect on their carriers, act to increase 
the expected number of their copies in the population of the next generation. 
Thus, in Hamilton’s terminology, natural selection is expected to favor genes 
which increase their carrier’s inclusive fitness (e.g., Hamilton, 1964). 

More specifically, it has been maintained by Hamilton that if, in order to 
save a kin of relatedness r (see Wright, 1922), a risk of 0 <x < 1 is needed, 
then, by taking this risk, an individual will add a value of r---x to its 
inclusive fitness. Taking such a risk will, therefore, be selected for if and only 
if x ,< r, and the value r is expected to be the maximal risk accepted by an 
individual in a population in order to save a relative of relatedness r. 

This prediction is, however, not always in a satisfactory agreement with 
empirical observations, a discrepancy that provoked some attacks on the 
very theory of kin selection (e.g., Zahavi, 1981). For example, parents’ help 
to their offspring is almost always more generous than offspring’s help to 
their parents or to their sibs, even though the relatedness in both cases is the 
same. Moreover, even on a theoretical level, the prediction mentioned above 
cannot possibly be true, for example, on an isolated island, overpopulated by 
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a highly inbred population, where only those individuals which manage to 
exterminate their neighbors, even though of close relatedness, will leave their 
genes to the next generation. (See Harpending, 1979, for a more detailed 
treatment.) 

More detailed study of kin selection, thus, concentrates on two parallel 
lines. On one hand, a rigorous model-study of various sorts of sib-to-sib 
altruism (e.g., Cavalli-Sforza and Feldman, 1978, Uyenoyama and Feldman. 
1980, Boorman and Levitt, 1980 and references therein) reveals some of the 
difficulties concerning selection of such complicated traits as altruism under 
the restriction of a genetical structure, even in the simplest cases. For 
example, negative correlation is shown to be created between alleles carried 
by the same individual when alleles are measured by their effect on the 
altruistic action (Feldman and Eshel, unpublished). Such negative correlation 
is shown to be favorable for the non-altruist, even though its effect is 
negligible near fixation. 

On the other hand, deviations from the classic prediction of kin selection 
are likely to occur in nature due to inevitable complications of the altruistic 
act itself which can differ from one situation to another (e.g., Cohen and 
Eshel, 1976). In a previous study (Eshel and Cohen, 1976) an attempt has 
been made to incorporate three crucial factors into the classic model of kin 
selection: 

(i) Differences in potential fertility makes it advantageous to take a 
higher risk in order to save potentially fertile (e.g., younger) kin. 

(ii) Competition among kins is likely to reduce, eliminate or even 
negate a loss in inclusive fitness due to death of a relative. 

(iii) As long as mutual help of some level is established among kins, a 
death of one individual results in a loss of its potential help to other 
members of its family and thereby to a further reduction in their inclusive 
fitness. 

The purpose of this work is to quantitatively study the combined effect of 
relatedness, competition and mutual dependence on the relations between two 
relatives having the same potential fitness. Most results are drawn from a 
model of a two-player game with the inclusive fitness as the evolutionary 
relevant payoff function. We consider the maximal risk (MR) accepted by 
one individual in order to save a relative of a given relatedness r and, 
adopting the definition of Maynard Smith and Price (1973), we calculate the 
value of the MR which is an evolutionarily stable strategy (ESS) in the 
population. In some cases there exist more than one positive value of 
maximal risk that can be established in the population as an ESS, and there 
might be also some negative values, corresponding to evolutionarily stable 
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strategies of spitefulness towards kin. (See also Hamilton 1970, Eshel and 
Cohen, 1976.) 

It is shown, however, that the dynamic process of natural selection, if 
operating to increase the inclusive fitness, can lead to the establishment of 
some, but not other, so-called evolutionarily stable strategies. A stronger, 
and for this purpose more natural, definition of evolutionary stability is, 
therefore, suggested in Section 4, and the stability of the various ESS values 
of maximal risk are checked according to this definition. 

In a special case of mutual help between sibs, the results achieved by the 
game theory model are validated (see Section 5) by a direct Fisherian 
analysis of changes in gene frequencies. 

2. THE GAME THEORY MODEL 

Let A and B be two individuals with a symmetric degree of relationship r, 
O<r< 1. 

Let A be ready to help B up to the maximal risk (MR) x. By this we mean 
that if the help of A can increase the survival probability of B by p, then A 
will donate this help to B unless by doing so it would decrease its own 
survival probability by more thanpx. It is convenient to extend this notion of 
maximal risk (MR) to include also negative values. Thus, by saying that the 
MR of A to B is x < 0, we mean that if A can inflict damage on B, he will 
do so unless the risk he takes is greater than the proportion -x of the 
damage inflicted on B, damage and risk being measured in terms of survival 
probability. We assume, likewise, that B is ready to help A up to the MR y 
(-co<y<Go). 

We concentrate on a time-continuous model in which each individual has 
an infinitesimal probability of dying during any infinitesimal time interval dt. 
We naturally assume that this probability depends both on the individual’s 
willingness to take a risk in order to help its relative (or harm him) (i.e., its 
MR value x) and on the willingness of its relative to take risk in order to 
help (or harm) him (i.e., the relative’s MR value y), provided both 
individuals are alive at the beginning of the time interval in question. Denote 
this probability by J(x, ~7) dt. The probability of B dying during the same 
time interval is, indeed, A( y, x) dt. The death probability of each of them in 
the absence of the other is n(O, 0) dt = 1 dt, say. From the definition of y as 
the MR of B we see that ).(x, J+) is a decreasing function of y. 

It follows that the length of time during which both individuals are alive is 
distributed exponentially with a parameter A(x, y) + ~(JJ, x) and an expec- 
tation 1/(1(x, ~7) + A( y, x)). 

The distribution of the remaining life span of each individual, after the 
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death of its relative, is exponential with a parameter A and expectation l/A 
The probability that A is the first one to die is A(x, y)/(A(x, y) + L(y, x)). 

We finally assume that the number of offspring produced by each 
individual is proportional to the length of time it lives in the presence of its 
relative (and, perhaps, competitor) plus 1 + (T times the length of time it lives 
after the death of this relative (provided it outlives it). u is the degree of 
competition between the two relatives and it is natural (though not necessary) 
to assume O<o< 1. 

With these assumptions, the fitness of individual A is 

w(x, 1’) = 
1 4Y, x) l+0 

4x, 4’) + A( L’. x) + A(x, y) + i( y2 x) . -T-- . (2.1) 

Obviously, the Fisherian fitness of B is o(y, x). 
Hence, the inclusive fitness of A, defined as the expected number of copies 

of its genes to be represented in the next generation (Eshel and Cohen, 1976) 
turns out to be 

fqx, y) = w(x, y) + YO( y, x) + c. (2.2) 

(The same equality, though with a different c, we get with Hamilton’s 
definition of inclusive fitness as “own offspring + r times the additional 
offspring B has because of A’s help.“) 

Our first objective is to calculate the optimal MR readiness of A to help B 
when B’s MR readiness to help A is given. Optimality is to be understood in 
terms of maximization of the inclusive fitness. Then we shall calculate 
evolutionarily stable strategies for mutual maximum risk. 

3. ANALYSIS OF THE MODEL AND EVOLUTIONARILY STABLE STRATEGIES 

We first prove the following useful proposition, resulting from the 
definition of a maximal risk strategy. 

PROPOSITION 1. For each x and y the following relation exists: 
,- 

x&i(y,x)=-&I(x, y). (3.1) 

Proof A(x. y) dt and A( y, x) dt are the death probabilities of A and B, 
respectively, during a time interval of length dt at the beginning of which 
both are alive. Increasing the maximal risk x of A by dx results in decreasing 
the death probability of B by L(y, x) dt - j.(y. x + d,u) dt. But for x > 0 this 
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is due to help, given by A at a relative cost to himself no greater than x + dw 
and no smaller than x (immediate from the definition of maximal risk), cost 
being measured in terms of death probability. Hence, the increase in the 
death probability of A, resulting from his readiness to take high risks, cannot 
be either larger than x + dx times the decrease in the death probability of B 
or smaller than x times that decrease. Thus 

x < A( y, x) dt - A( y, x + dx) dt 
’ A(x + dx, y) dr -1(x, y) dt 

<x+dx 

(for dx < 0 the inequality signs are reversed). By letting dx tend to zero, we 
get the required result. 

By similar arguments we show the validity of (3.1) also for x < 0. fl 

Note that the infinitesimal term (2/2x) A(y,x) dt a5 measures the 
probability that within a time interval of length dt, one individual will have 
an opportunity to save (or harm) the other with a relative risk between x and 
x + dx to himself. Obviously the derivative (2/2x) A(y, x) (and, therefore, 
(2/2y) A(y, x)) will be higher in populations wherein some intrinsic social 
structure increases the probability of one individual helping or harming 
another. Thus, except for a constant A= A(O, 0), the function 1(x, y) is deter- 
mined by the structure of the ecological interaction between individuals in 
the population and will be referred to as the interaction function. 

From the definition of A(x, y) we have (2/2x) A( y, x) 4 0 for all values of 
x and from Proposition 1 it follows that 

-&Y)>O for x > 0, 

n 
;n(x,Y),<o for x<O. 

Indeed, it is the absolute value 1x1 that determines the maximal risk taken in 
order to help (if x > 0) or harm a relative. 

We now return to Eq. (2.2) and End, for each y, a strategy x* =x*(y) 
that will maximize the inclusive fitness of A. 

By differentiating (2.2) with respect to x and by applying (3.1), we have 

2wG Y) = - (2/2x> 4 Y, x) 
2x /I[+, y) +qy,x)]* IC1+ r)(l -xv 

- (1 + u)( 1 - r)[l(x, 4’) + xA(y, x)] 1. (3.2) 
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We shall denote the expression in braces by B,(x). Because 

for every x and y, the sign of 2R(x, y)/2x is identical to the sign of B,(x). 

PROPOSITION 2. For every y between -1 and 1, the equation B,(x) = 0 
has a unique solution x*(y) with -1 < x*(y) < 1. 

Proqf: By applying Proposition 1 we have 

=-(1 +r)j.-(l+u)(l-r)A(y,x)<O (3.3) 

and the equation B,(x) = 0 has at most one solution. But, applying 
Proposition 1 again, we also have 

therefore 

B,(-lj=2(1+r)~-(1+a)(l-r)[~(-1.~)-~(y.-l)] 

> 2(1 + r))L - (1 + O)(l - rj[j.(-1. -1) -2(-l, -lj] 

= 2(1 + r)A > 0. 

whereas 

B,(l)=-41 +o)(l -r)[A(l,y)+A(y, l)] GO 

and the equation B,(x) = 0 has exactly one solution at (-1, 11. 

PROPOSITION 3. For every y, Q(x, y) has a unique global maximum in x 
at the point x = x*(y). and this maximum is strict. 

Prooj For x < x*, B,(x) > 0 and so (2/2x) Q(x, y) > 0, i.e., R(x, y) is 
increasing in x for x < x*. In the same way we show that LI(x. y) is 
decreasing in x for x > x*. 1 

Next we shall find the evolutionarily stable strategies (ESS) of mutual help 
or harm (and, indeed, show their existence). Using the definition of Maynard 
Smith and Price (1973), a strategy is an ESS if a population of individuals 
adopting that strategy cannot be “invaded” by an initially rare mutant 



426 ESHELAND MOTRO 

adopting an alternate strategy. (See also Maynard Smith, 1974 and 1976; 
Maynard Smith and Parker, 1976; Bishop and Cannings, 1976.) 
Equivalently, .$ is an ESS if 0($ A?) > 0(x, 2) for x # i, or if there exists a 
strategy such that a(?, 2) = Q(x, a), then I?(.?, x) > Q(x, x). 

PROPOSITION 4. For all 0 < r ,< 1, x*(y) is a non-decreasing function of 
y on the interval [-1, 1 ] (it is a constant 1 for r = I), i.e., the higher the MR 
readiness y of B to help A, the higher is the optimal MR readiness of A to 
help B. 

Proof: Employing again Proposition 1 we get: 

” 

[ 

n 

$B,,(x)=-(1 +o)(l --I) $i(x, Y)+X 1 ,7 =-$1(x, y)(l +a>(1 -r)(l -xy)20 

for all -1 <x < 1. From (3.3) we also know that (3/8x) B,(x) < 0. But 
x*(y) is the unique solution of B,,(x) = 0, thus Proposition 4 follows from 
the implicit function theorem. 1 

FIG. 1. The function x*(y), -1 Q y < 1. The intersection points of x*(y) with the line 
x = y represent ES!%. The points P and R are CSSs, whereas Q is an ESS which is not 
continuously stable. For each y, 0(x, y) (the inclusive fitness of A) is a decreasing function of 
x for x > x*(y) and an increasing function of x for x < x*(y). 
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PROPOSITION 5. The curue x = x*(y) intersects the main diagonal x = .I’ 
from aboce at least once on the interval -1 < y < 1. 

(See Fig. 1.) 

Proof. B-,(--l)= 2(1 + r)A > 0 and therefore x*(-l) > -1. B,(l) = 
-2( 1 + a)(1 - r)A(l, 1) < 0, with a strict inequality for r < 1, therefore 
.u*( 1) < 1. with a strict inequality if r < 1. 1 

As we see (Appendix), there might be more than one intersection of the 
curve x = x*(y) and the main diagonal. 

PROPOSITION 6. The intersections of the curce x = x*(y) and the main 
diagonal are the ESSs for the maximal risk. 

ProoJ Let (&a) be such an intersection point. Then 2 =x*(a) and 
Proposition 3 states that for all x # & a($, 2) > Q(x, 2). Thus 2 is an ESS. 

On the other hand, let 2 be an ESS. Then a(?, a) > 0(x, 2) and it follows 
again from Proposition 3 that 2 =x*(i). [ 

COROLLARY. The ESSs of the model are the solution of the equation 
B,(x) = 0, i.e., 

d(x) = (1 + r)( 1 - x)n - (1 + o)( 1 - r)( 1 + x) n(x, x) = 0. (3.4) 

4. WEAK AND STRONG ESS 

The ESSs of the model, being the intersections of the curve x = x*(y) and 
the main diagonal, can be divided into two kinds: 

(i) points where x*(y) intersects x = y from above: 

(ii) points where x*(y) intersects x = y from below or is tangential to 
it. 

We see that the ESSs of the first kind represent a stronger stability than 
the stability represented by the ESSs of the second kind. 

DEFINITION. An ESS will be called a continuously stable strategy (CSS) 
if, whenever the entire population has a strategy which is close enough to it. 
there will be a selective advantage to some individual strategies which are 
closer to the CSS. 

This definition is, indeed, meaningful only if there is a continuum of pure 
strategies. 

Continuously stable strategies are the only class that represents a possible 
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dynamic selection process which eventually leads to the establishment of a 
CSS in the population. Note, however, that if for some historical reason a 
consensus on an ESS is established in a population, this ESS, even if not 
CSS, will be immune to invading mutant strategies. 

PROPOSITION 7. The CSSs of the model are only those ESSs in which 
the curve x = x*(y) intersects x = y from abotie. 

Proof: Immediately follows from Proposition 4. For if x*(y) intersects 
x = y from above at x = 2, then for E > 0 sufficiently small and for ,e - E < 
y < 2, y < x*(y) < x*(i) = 2. For i? + E > y > 2, y > x*(y) > x*(a) = 2. In 
both cases there is a selective advantage to x*(y) over y, and x*(y) is closer 
to x^ than y. 

If, on the other hand, x*(y) intersects x = y from below, then for any 
strategy y in the vicinity of the ESS 2 there is a preferable strategy X*(Y) 
which is further from 2 than y. If x*(y) is tangential to x = y, then the latter 
statement holds for one side of the ESS. 

Notes and Remarks 

(1) In the case studied here of two equal relatives. there always exists an 
ESS which is continuously stable (an immediate result from Proposition 5). 

(2) d(O) = [2r - a( 1 - r)] 1. Thus, if c < 2r/( 1 - r) then #(O) > 0. This 
implies that the indifferent behavior x = 0 is in the domain of attraction of 
some altruistic CSS 2 > 0. If u > 2r/(l - r) then x = 0 is in the domain of 
attraction of a spitefulness CSS .-? < 0. (If u = 2r/(l - r) then x = 0 is an 
ESS.) 

(3) The simplest case of competition occurs when the resources of the 
population are limited and equally shared by the offspring of all surviving 
individuals. In this case, CJ = I/(n - 1), where n is the population size at a 
given time, and the sufficient condition for the existence of a CSS of 
altruistic behavior toward a relative of relatedness r turns out to be 

(2n - 1)r > 1. 

(4) If there is no competition (a = 0), then (provided r > 0) there is a 
CSS which is greater than zero. In this case, for x = r we have O(r) = 
(1 - r’)[A - A(r, r)]. But A( x,x is a decreasing function of x, since (using ) 
(3.1)) 

n 

&x,x) = (1 -x)$(x, J’) < 0. 
X=Y 

(4.1) 

Thus A = A(0, 0) is greater than A(r, r) and so 4(x = r) > 0. This implies the 
existence of a CSS which is greater than r. 
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(5) If r = 0 (but u > 0), i.e., the two individuals are not related at all. 
then Q(0) < 0. Hence there is a CSS which has a negative value. 

(6) 4 is a decreasing function of 0, implying a decrease in the values of 
the continuously stable strategies with the increase in the degree of 
competition. Also, Q is an increasing function of r, thus the values of the 
CSSs increase with the increase of the degree of relatedness. These 
statements. which are also intuitively logical, are not valid for the ESSs of 
the second kind. On the contrary, the values of such strategies (whenever 
they exist) increase with the increase in the degree of competition and 
decrease with increasing relatedness, in contradiction to common sense. 

(7) If both individuals have the same strategy, the inclusive fitness of 
each is 

I+r 1 
0(x, x) = 2 ( 

l+a 
~ - 
qx, x) + i. ) * 

(4.2) 

Since L(x, x) is a decreasing function of x, it follows that Q(x. X) is maximal 
if x = 1. But. unless r = 1. this point is unstable-for values of x close 
enough to 1. Q(x, 1) > Q( 1. 1). Subsequently the population fixes on a CSS 
which has a value smaller than 1. Thus we see that the possibility of 
exploitation by the relative leads to the establishment of a CSS for which the 
inclusive fitness does not attain its maximal value. 

(8) An example showing the possible existence of several stable 
strategies is presented in the Appendix. 

5. AN INDIVIDUAL SELECTION EXAMPLE 

In the following example we shall see that direct Fisherian selection will 
ultimately bring the population to the same degree of mutual help as 
predicted by the game theory model of the previous sections. (For 
comparison, see Eshel, 198 1.) 

We assume that the maximal risk is genetically determined by a single 
locus with two alleles: the dominant allele A implies a MR of the amount x. 
and J is the amount implied by the recessive allele a. The allele A is rare. 
and the relative frequency in the population of the heterozygote type is E. 
Assuming random mating, it is easy to see that the relative frequency of AA 
is O(E). For simplicity, we shall further assume that in each brood there are 
always two offspring. (There can be more than one brood for an individual. 
but only brothers of the same brood can recognize each other.) We shall 
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assume as before (Section 2) that the Fisherian fitness of an individual whose 
MR is x and that of its brother is Y, is 

o(x 
9 
y) = 1 + ((1 + fJw> A(Y7 x> 

i(x, y) + qy, x) * 

Progeny 

Mating type Frequency Both Aa One Aa, one aa Both aa 

AaXaa 2-5 + O(E) I I I 

aa Xaa 1 - 2E + O(E) L 
7 ? 

- 1 
other than above O(E) 

Hence, the relative frequency of Aa in the next generation is 

E[dX, x> + 4x, Y)l + O(E) 
2dY,Y) 

and natural selection will favor the rare allele A if and only if 

h(x, y)= w(x,x)+ o&y) - 2W(Yv Y) > 0 

We concentrate on small changes in the MR, i.e., on values of x which are 
close enough to y. For x = y, h(Y, y) = 0 while: 

wx, Y) 
ax 

‘= a+, x) + wx, Y) 
5 =y 2X ax ) .X=y 

and by substituting 

w(x 
, 
y) = 1 + ((1 + a>P) 4YY x> 

2(x, y) + A( y, x) 

we obtain 

Wxv Y) = - (WY, x)/ax) 
l?X X=y 2A2(YT YV 

x=s {;(l - y)A - f(l + c)(l + Y) A(Y9 Y)I 

1 WY9 xl 
=- 2F(y,y)A ax L L,*(Y)9 

.X=l’ 
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where d(y) = b,(y) is defined in (3.4) above. But &Q, x)/& < 0 and we 
have 

Hence, if e,,*(y) > 0, then there exists an interval around y in which 
h(x, .r) increases as a function of x. Thus, selection will act, at least at the 
outset, in favor of an allele which increases, in a limited amount, the 
tendency of its possessor to help its brother and against an allele which 
decreases such a tendency, and vice versa if ~,=,JJ) < 0. 

Hence, natural selection, by means of small changes in MR, tends to 
establish in the population a degree of mutual help (in this case between 
brothers) which is equal to the value at which d(x) intersects the x axis from 
above. i.e., individual selection, in our example, will establish a degree of 
mutual help which is one of the CSSs obtained earlier by considerations of 
maximization of the inclusive fitness. 

6. DISCUSSION 

In this paper we have considered the problem of risk taking by an 
individual in order to save its relative. The combined effect of relatedness, 
competition and mutual dependence between individuals in the same 
population has been incorporated in a two-player game model, with the 
inclusive fitness as the payoff function. 

We have found that for each strategy of maximal risk (MR) adopted by 
one of the players, a single MR strategy exists for the other player which 
maximizes the latter’s inclusive fitness. Also, some of the admissible 
strategies are evolutionarily stable, i.e., if a sufficiently large proportion of 
the population adopts it, there is no “mutant” strategy that would yield a 
larger inclusive fitness. 

Moreover, in regard to stability, the ESSs in our model can be classified 
into two categories-some of the ESSs (the ESSs of the first kind) possess a 
stronger form of stability than is exhibited by the formal definition of an 
ESS. Thus, by introducing the notion of continuous stability of strategies. 
(i.e.. an ESS is continuously stable (CSS) if, whenever the entire population 
has a strategy which is not an ESS, there are strategies closer to the CSS 
which endow any individual adopting them with a selective advantage over 
the entire population), we have shown that the stable strategies of the first 
kind (and only those) are CSSs. 

Except for singular cases (in which the curve o(x) is tangent to the x axis). 
all the ESSs of our model exhibit the principle of small perturbations (Karlin 
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and McGregor, 1972), i.e., sufficiently small displacements in the parameters 
involved will not eliminate the ESS. but rather slightly change its position. 
However, only the CSSs are stable according to Samuelson’s correspondence 
principle (see Samuelson, 1947). That is to say, if the population had main- 
tained an ESS and if, in the course of time, the values of the parameters have 
been slightly changed (thus causing a small displacement of the ESS), 
evolution will tend to restore the ESS only in the case of a CSS. If the 
population had maintained an ESS of the second kind (a stable strategy 
which is not continuous), the population will subsequently be in the 
convergence region of another, continuous, stable strategy (and not of the 
near, new located ESS). 

APPENDIX: AN EXAMPLE SHOWING THE POSSIBLE EXISTENCE 
OF ESSs WHICH ARE NOT CSS 

Let us assume 

It is easy to see that this function fulfills the requirements for i(x, ~7). Let us 
further assume c > 2r/(l - r). Thus, ((0) < 0 and there exists a CSS which 
is smaller than zero. 

For any x, 0 <x ( 1, lim,,, d(x,x) = 0. Hence lim,, d(x) = 
(1 + r)(l -x)J > 0. Thus, for a large enough value of k, there exist two 
more solutions to the equation d(x) = 0 (which are both positive). The larger 
of these solutions is continuously stable, while the smaller is an ESS which is 
not continuous. 

Remark. The possible existence of more than one Nash solution to an 
inclusive fitness game with mutual help has already been noticed by Eshel 
and Cohen (1976). However, the problem of stability was not studied there. 
For the case of mutual help between relatives with unequal fertility, the 
reader is referred to Motro, 198 1. 
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