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Summary. As compared to classical, fixed sample size 
techniques, simulation studies showed that a proposed 
sequential sampling procedure can provide a sub- 
stantial decrease (up to 50~, in some cases) in the 
mean sample size required for the detection of linkage 
between marker loci and quantitative trait loci. Se- 
quential sampling with truncation set at the required 
sample size for the non-sequential test, produced a 
modest further decrease in mean sample size, accom- 
panied by a modest increase in error probabilities. 
Sequential sampling with observations taken in groups 
produced a noticeable increase in mean sample size, 
with a considerable decrease in error probabilities, as 
compared to straightforward sequential sampling. It 
is concluded that sequential sampling has a particularly 
useful application to experiments aimed at investigating 
the genetics of differences between lines or strains that 
differ in some single outstanding trait. 
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Introduction 

The uncovering of ever more prolific sources of 
highly polymorphic genetic markers, in both plant and 
animal populations (Beckmann and Soller 1983, 1990; 
Bernatzky and Tanksley 1986; Botstein et al. 1980; 
Chang et al. 1988; Fries et al. 1989; Georges et al. 1990; 
Helentjaris et al. 1986; Landry et al. 1987) makes it 
feasible to carry out experiments intended to map the 
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polygenic loci affecting quantitative traits (quantitative 
trait loci, QTL) in agricultural populations. In principle, 
mapping programs of this sort will involve two stages. 
The first stage will consist of a general testing of the 
entire genome in order to identify chromosomal regions 
affecting the trait (or traits) of interest. First-stage 
studies will often allow rough estimation of QTL 
position within these chromosomal regions (Weller 
1987; Paterson et al. 1988; Lander and Botstein 1989). 
However, this is not the primary purpose of such 
experiments, and more precise estimates of QTL loca- 
tions within the identified chromosomal regions, will 
generally require a second stage, involving additional 
experimental material specifically designed or collected 
for this purpose. In this study we consider the appli- 
cation of sequential sampling methods to the first, or 
testing, stage of QTL mapping programs. This will 
be particularly important in allowing an early deci- 
sion to discontinue scoring markers in QTL-negative 
chromosomal regions. It was found that utilization of 
sequential sampling can indeed effect a major reduc- 
tion in sample sizes required for detection of marker- 
QTL linkage, as compared to non-sequential methods. 
The effects of grouping of observations and of sample 
truncation were also examined. 

Theory 

In experiments designed to test for the presence of a 
QTL (or group of QTL) affecting a trait of interest in 
some chromosomal region, a population segregating 
for one or more genetic markers in that region is 
produced or obtained. A significant difference in 
quantitative trait value between marker genotypes is 
taken as an indication of the presence of one or more 
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QTL affecting trait value in the near vicinity of the 
marker (Sax 1923; Thoday 1961; Spickett and Thoday 
1966; Kahler and Wehrhahn 1986; Edwards et al. 1987; 
Weller 1987; Paterson et al. 1988; Weller et al. 1988). 
A number of theoretical studies have been conducted 
to explore the power of such experiments in crosses 
between inbred lines (Soller et al. 1976) and segregating 
populations (Beckmann and Soller 1988), or in analyses 
carried out within segregating populations (Soller and 
Genizi 1978; Amos and Elston 1989; Weller et al. 
1990). The effect of utilizing selected tails of populations 
(Lebowitz et al. 1987; Lander and Botstein 1989; 
Darvasi and Soller 1992), marker intervals (Lander 
and Botstein 1989), replicated progenies (Knapp and 
Bridges 1990; Soller and Beckmann 1990), and likeli- 
hood ratio tests as compared to ANOVA (Jensen 1989; 
Lander and Botstein 1989; Simpson 1989; Knapp et al. 
1990) have also been explored. Numbers required for 
adequate power range from a few hundreds (crosses 
between inbred lines and segregating populations) to 
a few or many thousands (studies within segregating 
animal or human populations), depending on gene 
effect at the QTL relative to error variance and other 
factors. 

In experiments involving large numbers of samples, 
marker information will be obtained in a sequential 
manner, as DNA samples from the experimental popu- 
lations are scored for marker genotype. Thus, it would 
seem plausible to utilize statistical methods of se- 
quential analysis to more rapidly obtain a decision to 
discontinue scoring the marker in QTL-negative 
chromosomal regions. 

We consider here the simplest design for the detec- 
tion of marker-QTL linkage, namely, the F 2 o r  back- 
cross of a cross between inbred lines. In this design, 
if we denote alternative alleles at the marker locus, M 
and m, there are two classes of informative progeny: 
MM and mm in an experiment based on F 2 progeny, 
and Mm and mm in an experiment based on backcross 
progeny. In a typical simple random sampling experi- 
ment, a given total number of progeny, n, are produced. 
All progeny are evaluated with respect to quantitative 
traits of interest, and then scored one at a time or in 
small batches for the markers. When all progeny have 
been scored for both quantitative traits and markers, 
a marker-QTL linkage analysis is carried out. 

Progeny showing one or other of the informative 
marker genotypes will be considered as belonging to 
one or other of two distinct populations, with a 
possible difference in the mean value of the quantitative 
trait of interest. More specifically, we consider two 
normally distributed random variables, xl and x2, 
which represent the value of the trait in each population, 
with unknown means #1 and/~2, but a known variance 
cr 2. When two parental lines differ markedly with 
respect to QTL affecting a particular trait (e.g., in 

crosses between resistant and sensitive populations, or 
between selection lines), the expected direction of effect 
associated with particular parental marker genotypes 
is known. In these cases, we test Ho:Pl =/~2 against the 
one-sided alternative HI:/~ 1 >#2. In other cases, the 
direction of QTL effect in the two parental lines is not 
known, so we test the two-sided alternative H 1 :#1 r 
Practically, the acceptance of Ho will be considered as 
an error if (#1 - ~2)/N~ G ~ (~ for a one-tailed test or 
if I#1 - #2[/x/~a > c5 for a two-tailed test, where 6 is a 
preassigned positive number. By appropriately choos- 
ing the units, we can set o -2 equal to 1. 

Let c~ and/~ denote the Type I and Type II error 
probabilities, respectively. Thus, if #1-/~2 =0,  the 
probability of rejecting H0 does not exceed e, and 
whenever #1-/-/2 ~ N ~  2~i (for the one-tailed test) or 
1~/1 --  ~/2[ ~ N~ 2~ (for the two-tailed test), the probability 
of accepting H0 does not exceed/3. 

Sequential sampling 

Following Wald (1947), let A = ( 1 - e ) / f i  and B =  
fl/(1--~). At the k t~ (k_> 1) stage, that is, after 2k 
observations (k from each population) have already 
been obtained, we compute a test statistic, such that 
if the test statistic is < logB,  we accept Ho; if it is 
> logA,  we reject Ho; while if the test statistic is 
between logB and logA, we continue and take two 
more observations, one from each population. 

Test statistics for the one-tailed and for the two- 
tailed tests can be derived from the likelihood ratio, 
in the following manner. Suppose we draw two samples 
( X l  1 , ' ' ' ,  X lk and x21 . . . . .  X2k), one from each of the two 
populations, each sample having the same size, k. The 
combined likelihood is 

(i/2rc) k exp - ~ 2 (xll - #1) 2 - ~ F, (xxj - #2) z �9 
i=1 j = l  

Denote ~ = (]21 -[- p2)/2, then under H o the likelihood is 

1 k _ 1  k /])27.j 
C =(1/2g)kexp [ _  ~i__~1 (XU_ fi)2 2j=~1 (X2J-- 

If/~l - P2 = x/~6, then ~i = fi+a/x/2 and #2 = fi - 6/ 
x ~ ,  and the likelihood is 

1 k 
D-(1/2rt)k exp[--~i=~ 1 ( x l l -  f i - -6/x~) 2 

1 k 
2j~=l(X2j--fl'~-(~/%~)21 , 

whereas if ]J 1 - -  # 2  ---- - -  ~f2(~, then #1 = ~ - 6 / ~  and 
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#2 = ft + 6/x/2, and the likelihood is 

E - (1/2~) k exp - ~ i~1 (x~i - / i  + 6/x/i)  2 

2jZ 
For the one-tailed test, the likelihood ratio is D/C, 

which, after some algebra, simplifies into 

exp [($1, k - S 2,k)6 / vF2 -- lk62], 
k k 

where Sl,k= ~, xli and S2,k= ~ X2j are the sum of 
i=1 j = l  

observations of each sample. Hence the test statistic 
for the one-tailed test is 

06/ , /2  1 , , - 5 k 6  . ( 1 )  

For the two-tailed test, two different approaches 
will be considered. The first is based on Wald's (1947) 
procedure for a single-sample, two-tailed test. Adapting 
Wald's single-sample procedure to our two-sample 
ease, we thus consider the ratio �89 which 
simplifies into 

�89 �89 {exp [(S 1,k - -  S 2 , k ) 6 / N ~ ]  

+ exp[ - ($1 ,k - S2,k)6/V/2] }. 

Hence the test statistic for the two-tailed test is 

log{cosh[(S~,k -- S2,k)3/X/@I} -- �89 k62, (2) 

where coshx = �89 x + e- x). 
The second approach, or Armitage's (1975) pro- 

cedure, actually considers 

IS, ,k -- S2,k 16/X//2 -- �89 k62 (3) 

as the test statistic for the two-tailed test. 

Expected number of observations under 
sequential samplin9 

(1) One-tailed test. An approximation for the expected 
number of observations (taken from each population) 
required by the sequential procedure (when the differ- 
ence of means ktl - # 2  is 0) is (Wald 1947) 

P(O) log A + [1 - P(0)] log B 
E0(n ) ~ , (4) 

t0- 
where P(0) is the probability that, at the final step, the 
test statistic takes a value > log A, and 1 - P(0) is the 
probability that it takes a value < log B. Hence, if 
#1 - - ~ 2  = 0 ,  

Eo(n) ~ - [~ log A + (1 - ~)log B]/162, 

and if Pl - P2 = x / ~ ,  

E fi6(n) ~ [(1 -- fl)log A + fl log B]/�89 

(2) Two-tailed test. For the two-tailed sequential test 
there is no easy way to obtain an approximation for 
the expected sample size, hence for both Wald's and 
Armitage's procedures this parameter was estimated 
using computer simulations. 

Effect of random presentation of populations 

Testing equality of means by the procedure proposed 
in this study requires that the two samples, one from 
each population, will always be of equal size. In the 
present application it is not possible to determine to 
which population an individual belongs until after it 
is drawn. In such cases, if the test calls for, say, n 
individuals from each population, one should be pre- 
pared to end with examining more than 2n individuals. 
If each individual has the same probability of belonging 
to either population, the expected excess over 2n is (see 
Appendix) 

2n 22~, 

and for a large n it is, approximately, 2v/n/x/~. 

Effect of 9roupin9 

Suppose observations are taken in groups, each of size 
m, say. The sequential procedure is then as follows: 
At the k th stage, that is, after sampling 2k groups of 
size m (k groups from each population), we compute 
the appropriate test statistic for the one-tailed [Eq. (i)] 
or the two-tailed [Eq. (2) or Eq. (3)] test, where k is 
replaced by km, and accept Ho if the test statistic is 
< log B; reject Ho if it is > log A; or continue and take 
two more groups of size m, one from each population, 
if the test statistic is between log B and log A. 

When such a procedure is followed, the expected 
sample size will be larger than when observations are 
taken singly. Indeed, the expected number (from each 
population) can be increased by an amount which is 
even larger than m - 1. This reflects the fact that after 
the first passage either into the acceptance region or into 
the rejection region, there is still a positive probability 
of re-entering the non-decision region (that is, for our 
test statistic to be back between log B and log A). There 
is no easy way to assess the effect of grouping on the 
realized error probabilities ~ and ft. Consequently, the 
effect of grouping was determined by simulation. 

Effect of truncation 

In some situations, sample progeny are taken from 
very large populations that are produced for a variety 
of commercial or experimental reasons, and there is 
no effective limit to the number of individuals that can 



be sampled.  This would  be the case, for example ,  in 
analyses  of da i ry  catt le data ,  where very large numbers  
of individuals  are p roduced  and  eva lua ted  with respect  
to quant i ta t ive  traits,  for rout ine  reasons of herd 
management .  In such cases, an unl imi ted  sequent ia l  
sampl ing  p rocedure  can be followed. In many  cases, 
however,  an exper imenta l  popu la t i on  will be p roduced  
par t i cu la r ly  for purposes  of m a r k e r - Q T L  analysis.  In  
such cases, it is impor t an t  to set some upper  limit, say 
N, for the size of the p o p u l a t i o n  to be p roduced ,  and  
to te rmina te  sequent ia l  sampl ing  when this l imit  is 
reached.  This  is t e rmed sequent ia l  sampl ing  with 
' t runcat ion ' .  In  this p rocedure  we follow the usual  
sequent ia l  test p rocedure  as long as k _< N - 1. At  the 
N th stage, if and  whenever  it is reached,  we ei ther  accept  
Ho (if the test s tat is t ic  is _<0) or  reject Ho (if the test 
s tat is t ic  is >0).  
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Theoret ical ly ,  t runca t ion  is expected to increase 
bo th  Type  I and  Type  II  e r ror  probabi l i t ies .  If N, 
however,  is large enough,  the effect of t runca t ion  on 
both  types of e r ror  can be negligible. Again,  there is 
no easy way to assess the effect of  t runca t ion  on the 
realized c~ and fl, and  this was de te rmined  by 
s imulat ion.  

Numerical results 

Tables  1 and 2 show est imates  (based on compu te r  
s imulat ions)  of the mean  sample  size and of the Type  I 
and  Type  II  e r ror  probabi l i t ies  for the p roposed  one- 
tai led and two- ta i led  sequential  tests. 

Table  1 considers  the features of the sequential  
tests as a function of 6, the pa rame te r  which reflects 

/ N  

Table 1. Estimates of the mean size [E(n) _+ SE] of the sample drawn from each population, and of the realized error probabilities 
(a and/~), for the sequential tests (without grouping or truncation), as a function of 6. The tests were constructed with the assumed 
p~-obabilities 0.05 for each type of error, and the estimates were obtained by computer simulations, 2000 samples drawn for each 
case. (Since in the one-tailed test, the symmetric assumption ~ = fl brings about mean sample sizes and realized error'probabilities 
which are the same under 0 = 0 as under 0 = x/26, estimations for the one-tailed test were performed only under 0 = 0.) The 
required sample sizes for the classical, non-sequential test are given for comparison, together with the expected savings due to the 
sequential procedure 

(a) One-tailed test 

Resolution ~ = 0.2 ~ = 0.4 ~ = 0.6 ~ = 0.8 6 = 1.0 

Sequential sampliAng 

E(n) 136.1 +2.1 37.3 +0.5 17.1 +0.2 10.3 _+0.2 7.4_+0.1 
Saving 50% 45% 43% 39% 33% 
~,/~ 0.0495 0.0355 0.0310 0.0265 0.0305 

Fixed-size sampling 
n 271 68 30 17 11 

(b) Two-tai led test 

Resolution 6 = 0.2 c~ = 0.4 6 = 0.6 6 = 0.8 3 = 1.0 

Sequential sampling, Wald's procedure 
/ N  

0 = 0 E(n) 209.8 • 2.0 55.5 • 0.5 26.6 -+ 0.3 14.2 -+ 0.1 9.5 • 0.1 
Saving 35% 32% 26% 29% 27% 

0.0455 0.0585 0.0500 0.0350 0.0235 
0 = x/26 A _ _ E(n) 175.0 + 2.4 45.5 + 0.6 21.1 _+ 0.3 12.3 _+ 0.2 8.2 _+ 0.1 

Saving 46% 44% 41% 39% 37% 
fi 0.0420 0.0415 0.0300 0.0300 0.0345 

Sequential sampling, Armitage's ffrocedure 
A 

0 = 0 E(n) 247.8 _+ 2.7 61.6 _+ 0.7 30.9 _+ 0.4 16.8 _+ 0.2 10.9 _ 0.1 
Saving 24% 24% 14% 16% 16% 
02 0.0555 0.0485 0.0635 0.0335 0.0245 

0 = ~f2~ "~ _ _ E(n) 167.4 + 2.5 43.6 + 0.7 20.1 _+ 0.4 12.7 • 0.2 8.4 • 0.1 
Saving 48% 46% 44% 37% 35% 
/~ 0.0475 0.0275 0.0345 0.0220 0.0140 

Fixed-size sampling 
n 325 81 36 20 13 
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Table 2. The effect of grouping and of truncation. Estimates of the mean sample size [E(n)_ SE] and of the realized error probabilities 
(c~ and/~) are given for sequential tests with observations taken in groups (of size m), and for sequential tests subject to truncation 
(T). The tests were constructed for ~ = 0.2, with the assumed probabilities 0.05 for each type of error, and the estimates were 
obtained by computer simulations, 2000 samples drawn for each case. Truncation was at the required sample size for the classical, 
non-sequential test, i.e., at 271 for the one-tailed and at 325 for the two-tailed tests. Mean sample size is also shown as a proportion 
(R) of the mean size for m = 1 without truncation. (Note that values for m = 1 without truncation are the same values as for 6 = 0.2 
in Table 1.) The proportion of truncated samples was 0.0895 for the one-tailed test, and 0.1070 and 0.0970 for the two-tailed test 
under H o and H 1, respectively 
(a) One-tailed test 

Group Size (m) 1 1, T 10 50 100 

E(n) 136.1 _ 2.1 128.4 _+ 1.6 156.8 __ 2.4 197.2 _+ 2.8 227.8 _+ 3.0 
R 1.00 0.94 1.15 1.45 1.67 
~2,/~ 0.0495 0.0575 0.0375 0.0210 0.0165 

(b) Two-tailed test (Wald's procedure) 

Group Size (m) 1 1, T 10 50 100 

0 = 0 E(n) 209.8 _+ 2.0 203.6 +_ 1.4 223.2 _+ 2.1 268.4 _+ 2.6 296.1 _ 2.9 
R 1.00 0.97 1.06 1.28 1.41 
o2 0.0455 0.0515 0.0360 0.0225 0.0175 

0 = ,,/26 /" E(n) 175.0 +_ 2.4 165.7 _ 1.9 189.3 _+ 2.5 229.7 _+ 3.2 257.5 _+ 3.1 
R 1.00 0.95 1.08 1.31 1.47 
/~ 0.0420 0.0615 0.0425 0.0280 0.0230 

the required degree of resolution of the test. As expected, 
mean sample size increases with increase in the required 
degree of resolution (i.e., with decrease in ~), and 
sample sizes are greater for two-tailed than for one- 
tailed tests. Sequential sample sizes, nevertheless, are 
considerably smaller than those required by the classi- 
cal, fixed sample size procedure. Yet, a l though the 
approximat ion for the mean sample size of the one- 
tailed test [Eq. (4)] predicts (under Ho, for example) a 
saving of about  51% in sample size, the simulations 
show a somewhat  smaller reduction, from 33% (if 

= 1.0) to 50% (if ~5 = 0.2). This, however, is accompanied 
by reduced error probabilities, which are generally less 
than those set in the simulation. A similar tendency is 
also displayed by the two-tailed tests. 

It is not  easy to decide which of the two-tailed 
tests is preferable. However,  the simulations suggest 
that Wald's procedure has an advantage over Armitage's 
procedure under Ho, whereas Armitage's procedure 
seems to be slightly more  advantageous than Wald 's  
under H1. 

Table 2 shows the effect of grouping and the effect 
of t runcat ion on sample sizes and error probabilities 
for the one-tailed and for the two-tailed (Wald's pro- 
cedure) sequential tests. Truncat ion,  which was set 
at the required sample size for the classical, non- 
sequential test, produced a modest  decrease in mean 
sample size, accompanied by a modest  increase in error 
probabilities. Thus, t runcat ion at that  level does not 
appear  to produce a major  decrease in overall accuracy 
of the sequential procedure. 

As expected, grouping produced a noticeable en- 
largement of mean sample size, an enlargement which 
increases with group size, m. In each case, moreover,  
the propor t ional  enlargement was almost twice as 
great for the one-tailed as for the two-tailed test. 
Notwithstanding,  grouping produced a considerable 
decrease in error probabilities, to values well below 
those set in the simulation. 

Discussion 

The results of this study show that sequential sampling 
procedures can provide a substantial decrease in the 
mean sample sizes required for marke r -QTL linkage 
determination. 

Mor ton  (1955) examined the mean sample size 
required by sequential tests for detection of linkage in 
human  sibship data, as compared  to various fixed size 
tests. He found that when linkage is present, the 
sequential test required only half as many  observations 
as a fixed size test; while when linkage was not present, 
only one-third as many  observations were required. 
These savings are greater than those obtained in the 
present study, but this is probably  due to the weakness 
of the fixed size tests that  he investigated. 

M o r t o n  (1955) was also the first to develop user- 
friendly sequential probabili ty ratio tests for the deter- 
minat ion of linkage between marker  loci and disease 
loci in human  pedigrees. At present a considerable 
effort is being invested in developing user-friendly 
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likelihood ratio tests for determination of linkage 
between marker loci and QTL (Jensen 1989; Lander 
and Botstein 1989; Knapp et al. 1990). When these 
methods are available, they will be readily amenable 
to application of sequential sampling schemes, since 
all that will be required will be a comparison to the 
A and B factors of Wald (as defined above), of the 
likelihood ratio obtained at each stage. Although 
calculation of expected sample sizes for such test 
statistics will require extensive simulations, it is clear 
from the results of the present, as well as other, studies, 
that considerable savings can be confidently expected. 
Thus, it would appear that routine implementation of 
sequential sampling schemes with truncation and mild 
grouping can be recommended, even without further 
analysis. It should not be necessary to know the exact 
extent of savings, in order to benefit from whatever 
savings are to be obtained. 

In practice, marker-QTL linkage analyses can be 
expected to involve many dozens or more of markers. 
Hence, the actual number of progeny that are raised 
and evaluated with respect to the quantitative traits 
of interest will not necessarily be reduced, since at least 
some of the markers can be expected to require 
considerably larger than average sample sizes for 
reaching a decision. The reduction in sample size, 
therefore, will be obtained as a reduction in the number 
of individuals that are scored, on the average, for any 
particular marker. That is, the reduction will be in the 
total number of individual marker determinations. 
When sample sizes are small and costs of marker 
scoring are only a small fraction of the overall costs 
of a study, as in the mapping of genes responsible for 
human diseases, it may be most convenient to score 
all progeny in parallel for most marker genotyping 
systems (e.g., RFLPs or automated PCR-based typing). 
However, agricultural or human studies involving 
polygenic loci with relatively small effects may require 
marker genotyping of many hundreds or thousands 
of individuals. In these cases, and in marker-assisted 
selection programs (Kashi et al. 1990), genotyping will 
be a major component of the overall cost of the study, 
and sequential sampling methods can be expected to 
yield substantial savings. 

When many traits are considered, and all are 
evaluated simultaneously for marker-QTL linkage, it 
can also be expected that even for any particular 
marker, a decision for some traits will require a larger 
sample size than for others. In this case, the required 
number of marker identifications is determined by the 
trait which takes the longest to reach a decision, and 
this number can be distinctly larger than the number 
expected in sequential sampling for a single trait. Thus, 
in this case, very little can be gained by sequential 
procedures. Major savings, therefore, will be obtained 
in those instances where the experiment is aimed at 

identifying QTL affecting a single trait. However, such 
experiments can be expected to be a major component 
in the total context of marker-QTL linkage analyses, 
including as they do all of those instances of marker- 
QTL analyses that are aimed at investigating the 
genetics of differences between lines or strains that 
differ in some single outstanding trait - as in the case 
of resistances to specific diseases [e.g., trypanotolerant 
N'Dama vs the sensitive Zebu (Soller and Beckmann 
1987)], breeds characterized by an extreme phenotype 
for a particular trait (e.g., the high fertility Chinese 
swine, or broiler breeds of poultry as compared to 
layer breeds), or experimental selection lines that differ 
with respect to a single trait. In such cases, it has been 
shown that the use of selective genotyping (basing the 
analysis on selected extreme phenotypic tails of the 
population) can lead to a three- to four-fold reduction 
in the number of individuals assayed for the markers 
(Lander and Botstein 1989; Darvasi and Soller 1992). 
Thus, a combination of sequential sampling and selec- 
tive genotyping can be expected to reduce the overall 
number of marker evaluations by a factor of almost 
eight-fold, as compared to the classical, fixed-size sampl- 
ing from an unselected offspring population. 
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Appendix 

Effect of random drawin9 of sample populations 
on total sample size 

Suppose that we already have a certain number of pairs. We 
can either be in a balanced situation, where we have the same 
number of individuals from each population, or we can be in 
an unbalanced situation. If we wish to obtain an additional 
pair, and if we are in an unbalanced situation, we need to get 
exactly one more individual from whichever population is in 
deficiency. The number of additional draws then has a geometric 
distribution with the parameter 1/2, and its expectation is 2. If 
we are in a balanced situation, after a single draw we will shift 
into an unbalanced situation. Thus, the expected number of 
draws needed in this case to obtain an additional pair is 
1 + 2 = 3 .  

When obtaining the k th pair, we are in a balanced situation 
with probability 

/ 2 k - l \  1 ( 2 k \  1 
2 t =t 

and in an unbalanced situation with probability 1 -pk .  The 
expected number of additional draws needed to obtain the 
(k + 1) th pair is 3pk + 2(1 -- Pk) = 2 + Pk" Hence, the expected 
number of draws needed to obtain n pairs is 

n 1 n 1 

Z ( 2 + p k ) = 2 n +  Z Pk, 
k = 0  k = 0  

n - 1  

which is larger than 2n by an excess of ~ Pk" Note that for 
k = 0  

k > 1, Pk = Pk- 1(1 -- 1/2k), that is, 

2kpk = 2kpk 1-- Pk 1. 

Summing both sides of this equation over k from 1 to n yields 

n - 1  

Pk = 2npn" 
k - O  

Hence, for obtaining n pairs, the expected excess in the number 

2n(2n  1 
of draws is \ n / 2 z"" 

Using Stirling's formula, we see that for a large n, the 
expected excess is approximately 2 ~ / x / ~ .  


