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Near-Far Search: An Evolutionarily Stable Foraging Strategy
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This study addresses the momentary rules of nectar foraging behavior on carpet-type, small
inflorescences. It has been suggested that patchiness in the distribution of nectar can give an advantage
to “near—far” type of foraging strategies; that is, to foragers which search “near” (in the neighborhood
of the last visited flower) as long as the nectar yield is high enough and go “‘far” otherwise. To explore
the evolutionary stability of near—far search, various foraging strategies were compared, according to
two, slightly different optimality criteria: the number of flowers emptied during a fixed length bout and
the number of flowers visited until total extraction of the entire inflorescence. With long bouts (in the
case of a single forager) or a substantial probability of revisits to the same inflorescence (in the case
of multiple foragers), a near—far foraging strategy is an ESS. Furthermore, prior patchiness in the nectar
distribution is not a necessary condition for the evolutionary stability of near—far search. It turns out
that during near—far foraging some patchiness is created by the foraging process itself, which the

near—far forager can exploit later on.

Introduction

After deciding in which area and on which plant
species to forage for nectar, a nectar forager has still
to decide on its “‘movement rules”. Generally, these
can be classified into three levels: movements between
individual plants, movements between flower patches
of the same plant and movements between individual
flowers within the same patch. In a forager’s reality,
decisions at each level have to be made without
having complete, real-time information about the
quality of the various resource patches. This quality
distribution can vary both in space and time, as a
result not only of the plant activity but also of the
foraging activity itself (Pleasants & Zimmerman,
1979, 1983; Zimmerman, 1981; Zimmerman & Cook,
1985; Possingham, 1989; Waser & Mitchel, 1990;
Selten & Shmida, 1991; Cohen & Shmida, 1993).
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However, as was first pointed out by Oaten (1977),
the rewards can provide a forager with information
about its environment. Thus, the nectar collected by
the forager, which primarily serves as an energy
supply, can also provide it with some information as
to the quality and the distribution of this resource,
and consequently affect its subsequent movements.
Among flower foraging bees, the actual movements
are the result of two basic components, the distance
of the flight and the direction of the flight. Pyke (1978:
88—89) reports that “‘the more time a bumblebee
spends at a flower on an inflorescence, the more likely
it is to fly to another flower on that inflorescence”.
Since the amount of nectar obtained from a flower is
positively correlated with the time spent at that
flower, Pyke’s observations suggest that “‘the likeli-
hood of a bumblebee flying from one flower to
another on the same inflorescence increases with the
amount of nectar obtained at the first flower”.
Waddington (1980) has shown that while honeybees
usually make very short flights between consecutively
visited flowers, the distance increases as a function of
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the number of non-rewarding visits which immedi-
ately preceded the flight. Thus, if a poor, non-reward-
ing patch is encountered, inter-floral flights tend to be
relatively longer (see also Heinrich, 1979; Best &
Bierzychudek, 1982; Thomas et al., 1982; Zimmer-
man, 1982a; Zimmerman & Cook, 1985; Galen &
Plowright, 1985). Moreover, these studies demon-
strate that in rich, highly rewarding patches, the
foragers veer more frequently as they move, and with
more acute angles than they do on less rewarding
patches. After one or few non-rewarding visits, the
turning angle is quite obtuse, and the bees often move
straight ahead. More tortuous search paths, following
higher prey density, have also been reported for birds
(Smith, 1974; Gill & Wolf, 1977; Zach & Falls, 1977).
As a result, the foragers engage in an “‘area restricted
searching” (Tinbergen et al., 1967). Selten & Shmida
(1991) have termed the resulting movement rule as
a “near—far” search: as long as the recent reward is
high enough, a bee adopting the near—far strategy
tends to stay and look for the next flower in the
neighborhood of the last visited flower, whereas a low
reward induces her to search further away. As
demonstrated by recent field studies (Kadmon et al.,
1991; Kadmon & Shmida, 1992), such a behavior is
displayed by solitary bees foraging on Anchusa
strigosa flowers.

The scope of the present work is to compare the
reward expected from adopting the near—far strategy
with that expected from several alternative search
strategies. Since the activity of other foragers changes
the resource distribution both in space and time, the
optimal solution for a single forager can be different
from that obtained in a multi-forager situation. Thus,
we will examine the conditions under which the
near-far search is an evolutionarily stable strategy
(ESS—Maynard Smith & Price, 1973). This will be
done for a ““carpet” type of small inflorescences, i.e.
small groups of flowers, arranged in patterns that do
not induce any directionality (such as that induced,
for example, by a vertical inflorescence) on the
pollinator’s movement.

The alternative strategies that will be considered, as
well as the near—far strategy, are all simple in the sense
that they require only a single-level memory, i.e. a
“memory window” (Cowie, 1977) of length one. In
other words, decisions are made on the basis of the
reward obtained only at the last visited flower. Indeed,
most of the observed departure rules suggest the
possibility of a single-level memory (Harder & Real,
1987; Pleasants, 1989; Real et al., 1990; Cresswell,
1990; Cuthill et al., 1990; Kacelnik & Todd, 1992;
Kadmon & Shmida, 1992). Waddington’s (1980)
experiments, on the other hand, indicate that

bumblebees may adjust their flight distances according
to the information gathered from several recent visits.

The Various Movement Strategies

We consider a group of N flowers, and define the
following movement strategies:

(1) Random Search. The next flower to be visited
can be any of the N —1 flowers in the group
(excluding the last visited one, which is avoided on the
immediately following step), chosen at random (with
uniform probability). It should be noted that
Random Search should not be confused with random
foraging with respect to direction, exhibited by
pollen-collecting bumblebees (e.g. Zimmerman,
1982b), which results in Near Search, defined next.

(2) Near Search. The next flower to be visited is
always the nearest neighbor (or any of the nearest
neighbors, in case of more than one) of the previously
visited flower. Near Search has been observed in
pollen-collecting bumblebees (Hodges & Miller, 1981;
Zimmerman, 1982h; Haynes & Mesler, 1984).

(3) Far Search. The next flower to be visited is
never a nearest neighbor, but a randomly chosen,
other flower in the group.

(4) Near—Random Search. This strategy is a
combination of Near and Random Search. The bee
moves to a nearest neighbor as long as she is rewarded
by the previous flower, but switches to Random
Search after visiting a non-rewarding flower. Near
Search is restored after visiting a rewarding flower.

(5) Near—Far Search. This strategy is a combi-
nation of Near and Far Search. The bee moves to a
nearest neighbor as long as she is being rewarded by
the previous flower, but switches to Far Search after
visiting a non-rewarding flower. Near Search is
restored after visiting a rewarding flower.

Foraging in a Large, Patchy Environment

The apparent advantage of near—far foraging in
patchy areas is demonstrated in this section, where the
efficiency of Near—Far and Random Search are
compared.

Consider an area with N flowers, and foraging
bouts of a fixed length M (i.e. M flowers are visited
in each bout). Before foraging starts, a proportion ¢
(0 <g<1) of the flowers are full (with the same
amount of nectar, for computational simplicity),
whereas 1 — ¢ of the flowers are empty. In visiting a
full flower, the forager draws out all the nectar and
the flower becomes empty. (Compare, however, with
Zimmerman, 1983.) The flowers are considered to be
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anonymous and emptied flowers are not marked.
Thus, only by visiting a flower, the forager can find
out whether it is full or empty (e.g. Cresswell, 1990).
We also assume that the duration of a foraging bout
is short, so that nectar is not renewed during a single
bout.

In determining which foraging strategy, Near—Far
or Random Search, is more successful, we compare
the expected number of full flowers encountered in a
single bout (that is, the expected number of flowers
that the forager empties during a bout) for the two
strategies.

For Random Search, the expected number of
emptied flowers can be obtained analytically (see
Appendix A) and is given by

,u:q{l +(N— 1)[1 —(1 —N1_1> _ } 1)

For Near—Far Search, the expected number was
estimated by computer simulations. Thus, we
considered a 40 x 40 flower torus (a doughnut shaped
surface), with an initial proportion ¢ = 1/2 of full
flowers. The area was divided into alternating full and
empty patches. Three levels of patchiness were
considered: a pattern with four (20 x 20 flower each)
large patches, a pattern with 16 (10 x 10 flower each)
medium size patches, and a pattern with 64 (5 x 5
flower each) small patches. For each pattern, four
different bout lengths were considered: 20, 50, 100
and 200 visits.

Estimating the expected number of emptied flowers
was done by drawing samples of 1000 simulated
Near—Far bouts (for each of these 12 combinations)
and calculating the mean number of flowers emptied
per bout. These estimates, accompanied by the
corresponding estimates of their standard errors, are
presented in Table 1, together with the expectations for
Random Search, which were calculated using eqn (1).

The results (all are statistically significant) indicate
the following.

(1) In a patchy environment, Near—Far is more
advantageous than Random Search.

(i) The larger the size of the patches, the greater
the advantage.

A Single Forager on a Small, Full Inflorescence

We turn now to small inflorescences and consider
the case of a single forager, performing a single
foraging bout. Before foraging starts, all the flowers
are full.

In determining which of the above-mentioned
foraging strategies is more successful, we use two
slightly different criteria.

(I) FORAGING BOUTS OF A FIXED LENGTH

We assume that during a foraging bout, a forager
visits the same number (M) of flowers. We then
compare the expected number of full flowers
encountered in a single bout (that is, the expected
number of flowers that the forager empties) for the
various foraging strategies.

For Random Search, the expected number of
emptied flowers is given by eqn (1) (with ¢ = 1). For
the other strategies, the expected number was
estimated using computer simulations.

Three different sets of simulations were considered,
one set with a 19-flower plane inflorescence, another
set with a 19-flower globular inflorescence and a third
set with a 37-flower plane inflorescence. All these are
carpet-type inflorescences.

Each inner flower of the 19-flower plane inflores-
cence (see Fig. 1) has exactly six near-neighbors, while
half of the peripheral flowers have three and half have
four.

The flowers of globular inflorescence are the
vertices of a regular dodecahedron, which is a
polyhedron having 12 faces and 20 vertices. (For
comparison with plane inflorescence, we used one
vertex for a ‘“stem”.) Thus, 16 flowers have three
near-neighbors, while each of the three flowers
surrounding the stem has only two.

The 37-flower plane inflorescence is a 19-flower one
with an additional outer whorl.

TABLE 1
Expected number of flowers emptied during bouts of a fixed length M in a patchy,
40 x 40 flower environment

Foraging Number of flowers emptied during a bout of length M
strategy M =20 M =50 M =100 M =200
Random 9-947 24-636 48-513 94-085
Near—Far
four patches 13-:344 + 0-077 33-041 + 0-116 65-008 + 0-161 125-877 + 0-219
16 patches 12-827 £ 0-072 31:597 + 0-116 62-535 + 0-160 120-775 + 0-230
64 patches 11-849 + 0-071 29-117 + 0-110 57-204 + 0-158 111-389 + 0-212

Expectations for Random Search were obtained using eqn (1). For Near—Far, estimates
(mean + SE) were obtained by computer simulations (1000 simulated bouts for each case).
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Fi1G. 1. A 19-flower plane inflorescence.

For each set, five different bout lengths were
considered (M =10, 15, 20, 25 and 30 for the
19-flower sets, and M = 20, 30, 40, 50 and 60 for the
37-flower set). Field observations indicate that these
are quite typical bout lengths for solitary bees (e.g.
Schreiber, 1993).

For both 19-flower sets, estimates of the expected
number of flowers, emptied during a bout, were

obtained for each of the four strategies (i.e. Near, Far,
Near—-Random and Near—Far Search), whereas for
the 37-flower set, estimates were obtained only for
the Near—Far strategy. Thus, in the 19-flower sets, all
five search strategies are compared, whereas only
Random and Near—Far Search are compared in the
37-flower set.

Estimating the expected number of emptied flowers
was done by drawing samples of 1000 simulated bouts
(for each of these 45 combinations), and calculating
the mean number of flowers emptied per bout. These
estimates, accompanied by the corresponding esti-
mates of their standard errors, are presented in Table
2, together with the expectations for Random Search,
which were calculated using eqn (1).

The results (all are statistically significant) can be
summarized as follows:

(i) Near Search was the strategy that consistently
(i.e. for every bout length and inflorescence shape)
displayed the worst performance. This is not
surprising, since staying in the neighborhood in-
creases the probability of recurrent visits to the same
flowers. For the bout lengths considered, Near Search
performed better on the plane, than on the globular
inflorescence.

TABLE 2
Expected number of flowers emptied during bouts of a fixed length M and expected number of visits (rightmost
column) required to empty the entire inflorescence

(a) Plane inflorescence (19 flowers)

Length of
Foraging Number of flowers emptied in a fixed-length bout exhaustive
strategy M =10 M =15 M =20 M =25 M =30 bout
Random 8.239 10914 12.924 14.434 15.569 63.912
Near 6.653 +0.044 8.896 + 0.055 10.431 £ 0.066 11.686 + 0.067 12.830 + 0.069 104.825 + 1.412
Far 8.129 + 0.033 10.743 + 0.040 12.790 + 0.044 14.256 + 0.045 15.432 + 0.044 66.263 + 0.748
Near—Random 7.797 £ 0.028 10.581 + 0.038 12.814 + 0.041 14.434 + 0.043 15.652 + 0.042 62.508 + 0.678
Near—Far 7.915 + 0.026 10.843 + 0.034 13.089 + 0.040 14.700 + 0.042 15.908 + 0.040 62.347 + 0.687
(b) Globular inflorescence (19 flowers)

Length of
Foraging Number of flowers emptied in a fixed-length bout exhaustive
strategy M=10 M=15 M =20 M =25 M =30 bout
Random 8.239 10.914 12.924 14.434 15.569 63.912
Near 6.350 + 0.046 8.289 + 0.058 9.989 + 0.067 11.352 £ 0.072 12.569 + 0.071 99.435 + 1.335
Far 8.190 + 0.032 10.764 + 0.039 12.895 + 0.043 14.307 + 0.042 15.462 + 0.041 65.301 + 0.695
Near-Random 7.655 + 0.029 10.575 + 0.038 12.791 + 0.042 14.449 + 0.044 15.701 + 0.043 61.322 + 0.677
Near—Far 7.771 + 0.027 10.723 + 0.037 13.016 + 0.041 14.715 + 0.043 15.970 + 0.041 59.592 + 0.652
(c) Plane inflorescence (37 flowers)

Length of
Foraging Number of flowers emptied in a fixed-length bout exhaustive
strategy M =20 M =30 M =40 M =50 M =60 bout
Random 15.921 21.096 25.001 27.947 30.169 161.660
Near—Far 15.254 + 0.041 20.780 + 0.052 25.072 + 0.060 28.293 + 0.063 30.512 + 0.059 146.757 + 1.398

Expectations for Random Search were obtained using eqns (1) and (2). For the other search strategies, estimates (mean + SE) were

obtained by computer simulations (1000 simulated bouts for each case).
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(i) Random performed better than Far Search.

(iii) Near—Far performed better than Near—
Random.

Hence it is interesting to compare the Random and
the Near—Far strategies.

(iv) In all three sets, Random was found to be the
best performing strategy for short bouts, but
Near—Far turned to be the best strategy for longer
bouts. (For long enough bouts, Near—Random also
did better than Random Search.)

It seems that while performing a Near—Far (or a
Near—Random) search, the forager itself creates some
patchiness (recall that we have started with a uniform,
full-flower inflorescence), which it exploits later on
during the bout. Indeed, if we compare the
near-neighbor similarity with respect to nectar
occurrence, we find that on an inflorescence which has
been foraged by a Near—Far forager, near-neighbors
tend to be more similar (i.e. both full or both empty),
than on an inflorescence visited by a Random forager.
This comparison was done by simulating Near—Far
and Random foraging bouts on a 19-flower plane
inflorescence. After a fixed number (i.e. 5, 10 and 15)
of flowers had been emptied, all 42 pairs of
near-neighbors were examined. To each pair, either a
+1 or a —1 was assigned, according to whether or
not both neighbors were similar, and the mean of
these 42 numbers was calculated, to give the value of
the “near-neighbor similarity index” for that bout.
For each of the six combinations, a sample of 2000
bouts was drawn. Table 3 presents the sample means
(accompanied by the estimated standard errors) of the
similarity index for the different combinations. The
results clearly demonstrate a much larger similarity
index under Near—Far than under Random Search,
especially during the early stages of the bout. (Note
that for both strategies, the similarity index is larger
at the early stages of the bout, when most of the
flowers are still full, and at the late stages of the bout,
when most of them are already empty. This, however,
should not preclude the use of this index for
contrasting the two strategies.)

TABLE 3
The near-neighbor similarity index (see text) after S
flowers have been emptied from a 19-flower plane

inflorescence
Foraging Near-neighbor similarity index
strategy S=5 S=10 S=15

Random 0-1797 + 0-0027
Near—Far 0-3410 4+ 0-0032

—0:0497 £+ 0-0031 0-3004 + 0-0025
0-1082 + 0-0036 0-3547 + 0-0027

Estimates (4 SE) were obtained by computer simulations (2000
simulated bouts in each case).

(II) EXHAUSTING THE ENTIRE INFLORESCENCE

Another criterion by which the relative success of the
various foraging strategies can be determined is the
number of visits required for emptying the entire
inflorescence. While in reality, a forager does not linger
so much on the same inflorescence, the expected
number of visits until complete exhaustion can never-
theless measure the efficiency of the search strategy.

For the Random Search strategy, the expected
length of an exhaustive bout can be obtained
analytically (see Appendix B), and is given by

N—-1

p=1+WN-17Y ¢ )

t=1

For the other strategies, the expected length was
estimated by simulations. The estimates, ac-
companied by the corresponding estimates of their
standard errors, are presented in the right-most
column of Table 2, together with the expectations for
Random Search, which were calculated using eqn (2).

The results clearly indicate that Near Search
requires the longest bout in order to empty the entire
inflorescence. Far Search is much faster, and Random
is even more so. Near—Far is slightly faster than
Near—Random, and both are faster than Random
Search. Thus, according to this criterion, Near—Far is
the most efficient of all five foraging strategies.

Recurrent Bouts and the Evolutionary Stability of
Near—Far Search

In this section we consider the possibility of
recurrent foraging bouts to the same inflorescence.
These are assumed to be frequent enough, so that no
significant amounts of nectar are produced in the
interval between successive bouts. (The conclusions of
the preceding section, which dealt with the case of a
single forager, obviously apply also to cases of
recurrent, but infrequent bouts, that is cases where the
inter-arrival time is long enough, enabling the
complete replenishment of nectar.)

We wish to show that Near—Far Search can be an
evolutionarily stable foraging strategy also in
situations involving multiple bouts to the same small
inflorescence. Thus, we assume that Near—Far is the
prevalent strategy in the population, and compare the
payoff of a mutant (adopting any of the other
foraging strategies) to the payoff of a wild-type
individual (adopting the Near—Far strategy).

This was demonstrated using a 19-flower plane
inflorescence (see Fig. 1). First we considered the
expected number of flowers emptied during a bout on
a fresh, as yet unvisited inflorescence, by foragers



20 U. MOTRO AND A. SHMIDA

using the various foraging strategies. For the Random
Search strategy, the expected number was obtained
using eqn (1). For the other strategies (i.e. Near, Far,
Near—-Random and Near—Far), the expected number
was estimated by computer simulations. The results
are given in Table 4 (the “first bout” column). Next
we considered the expected number of flowers
emptied (by each of the strategies) during a second
bout on an already visited inflorescence. The first visit
to that inflorescence was assumed to be done by the
common, Near—Far forager. The simulation results
are given in Table 4 (the ““second bout” column). Two
different sets, each assuming a different bout length
(i.e. M =15 and M = 20) were considered.

For the 15-visit bout length, Random Search
turned out to be the most successful (and Near—Far
the second best) during the first bout, but Near—Far
was the most successful (and Random Search the
second best) during the second bout.

For the 20-visit bout length, Near—Far turned out
to be the most successful of all strategies during both
the first and the second bouts.

Thus, if the probability for a bout to be the second
on an inflorescence is large enough, Near—Far is the
most advantageous strategy; that is, in a population
adopting the Near—Far strategy, an individual having
any of the other foraging strategies has a seclective
disadvantage.

What value should this probability have for
Near—Far Search to be evolutionarily stable?
Consider N-flower inflorescences, and let m;

TABLE 4
Expected number of flowers emptied during first bouts
and during second bouts (which follow a first bout by
a Near—Far forager)
(a) Bouts of length 15

Foraging First bout Second bout

strategy (mean + SE) (mean + SE)

Random 10.9138 4.6617 + 0.0092
Near 8.8408 + 0.0250 3.6418 + 0.0216
Far 10.7598 + 0.0182 4.6322 + 0.0191
Near-Random 10.6002 + 0.0171 4.8146 + 0.0194
Near—Far 10.8844 + 0.0159 4.9106 + 0.0197

(b) Bouts of length 20

Foraging First bout Second bout

strategy (mean + SE) (mean + SE)

Random 12.9239 4.0075 + 0.0125
Near 10.3686 + 0.0287 3.1408 + 0.0205
Far 12.7972 + 0.0197 4.0322 + 0.0189
Near—Random 12.7904 + 0.0190 4.0806 + 0.0192
Near—Far 13.1084 + 0.0184 4.1190 + 0.0196

The expected number for Random Search (first bout) was
obtained using eqn (1). For all other cases, estimates (mean + SE)
were obtained by computer simulations (5000 simulated bouts in
each case).

(k=1,2,3,...) be the probability for a bout to be
the k-th on an inflorescence. (Clearly, n, > ;. ., for all
k.) Suppose that Near—Far is the prevalent strategy in
the population, and let W), and M, be the expected
number of flowers emptied during the k th bout by
a wild-type and a mutant forager, respectively. A
sufficient condition for Near-Far to be resistant
to such mutants is that Am, + Bm, > 1, where
A=(N—M,— W)/(N—W,— W) and B= (N —
W, — M,)/(N — W, — W,) (see Appendix C). For a
Random Search mutant, a somewhat more refined
condition can be obtained, with 4 =[W (N —
M) — MiWLIM(N — W, — W>)] and B = W>(N —
M,)/[M(N — W, — W>)]. Thus, for the case presented
in Table 4(b), a sufficient condition for
Near—Far to be an ESS is that 1.1755mw +
1.0489 7, > 1 and 1.1793 7w, + 1.0216 7, = 1. Note
that this is only a sufficient condition for the
evolutionary stability of Near—Far Search. Generally,
this strategy is expected to be evolutionarily stable
under wider conditions.

Discussion

Many studies, theoretical as well as empirical, point
out that patchiness in the distribution of nectar
plays an important role in the foraging behavior of
pollinators. While it has been suggested that
patchiness confers an advantage to near—far type of
foraging strategies, no theoretical work has yet
demonstrated the possibility that near—far can be
evolutionarily stable. The present work, which mostly
considers movements within a small, carpet-type
group of flowers, outlines conditions for the
evolutionary stability of near—far.

It turns out that prior patchiness is not a necessary
condition for the evolutionary stability of near—far
search. This strategy can be advantageous even if
nectar is uniformly spread, and no patchiness exists
previous to the foragers visit. Evidently, during
near—far foraging, some patchiness in the nectar
distribution is created by the foraging process itself.
If foraging bouts are long enough (in case of a single
forager), or if there is a substantial probability of
being the second visitor on an inflorescence (in case
of multiple foragers), the near—far foragers can
exploit that patchiness later on. This can overcom-
pensate the near—far forager for its disadvantage
during the earlier part of the foraging process, when
most of this patchiness is created.

The evolutionarily stable foraging strategy, which
is determined by the fitness considerations of the
foragers, obviously exerts a selective pressure on the
nectar producing plants. In addition to its possible
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influence on the nectar production process, the
foraging strategy can affect the evolution of other
plant characteristics, such as the size and the geometry
of the inflorescence. These, in turn, will have an effect
on the foraging strategies. This co-evolutionary
process, a consequent of the mutual dependence of
plants and pollinators, may be responsible to the
development of vertical, spiral and other directional-
ity-enhancing inflorescences, such as the unilateral
inflorescences of Heliotropium spp. (Boraginaceae),
Gladiolus italicus (Iridaceae) and Platanthera holmboei
(Orchidaceae), where the probability of repeated visits
to the same flower during a nectar foraging bout can
be considerably reduced (to the mutual advantage of
both the plant and the pollinators).

This research was supported by Volkswagen grant
1/63691 to the Ecoratio group. We would like to thank the
Institute for Advanced Studies of the Hebrew University of
Jerusalem for their hospitality, and R. Selten and B. Zame
for helpful discussions.
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APPENDIX A

Expected Number of Flowers Emptied During a Bout
Using the Random Search Strategy

Consider an inflorescence with N full flowers, and
a Random Search foraging bout of length M.

Let Xy (k=1,2,..., M) be 0 or 1, according to
whether the k-th visited flower was empty or full. Let
pr = Prob (X, =1). Thus, the number of flowers
emptied during the bout is X}, X;, and its
expectation u is X} py.
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Clearly, p; = p, = 1. For k = 2, py . equals py if the
k-th flower was empty, and equals p, — 1/(V — 1) if
the k-th flower was full. Thus,

Pk +1 =pk(1 —Pk) + [Pk - 1/(N_ 1)]P/< =
[l = 1/(N = D]
Hence,
p=[1—-1/(N-DF?*k=273,...,M),
and

u=2pk=1+2[1—1/(N—1)]k’2

— 1+ (N = 1)[1 —<1 —N1_1>M1}

If originally not all the flowers are full, then this
expression should be multiplied by the initial pro-
portion of full flowers.

APPENDIX B

Expected Length of an Exhaustive Bout using the
Random Search Strategy

Consider an inflorescence with N full flowers and a
Random Search foraging bout, which goes on until all
flowers have been emptied.

We call a visit successful, if it is to a full flower. Let
Xe (k=1,2,...,N) be the number of failures
between the k — 1 and the k th success. Hence X; = 0.
For k = 2, X, equals 0 with probability (N — k + 1)/
(N — 1), whereas with probability (kK — 2)/(N — 1),
X — 1 has a geometric distribution, with expectation
(k—2)/(N — k + 1). Thus the expectation of X; is
(k—2)/(N —k+1). The total number of visits
required to empty the entire inflorescence is
N + ZV_ X, and its expectation is

p=N+Y [(k—2/N—k+ 1)

k=2

N—-1
=1+WN-1)) "
t=1

APPENDIX C

A Sufficient Condition for the Evolutionary Stability of
Near—Far Search (Multiple Bouts)

Consider N-flower inflorescences, and let X be
the number of bouts per inflorescence. Let
pn=Prob(X=m) (m=0,1,2,...), and E(X) the
expectation of X. Thus, the probability that a bout is
the k-th visitor to an inflorescence is

k—1
T = |:1 - pm:|/E(X). k=1,2,3,...
m=1

Suppose that Near—Far is the prevalent strategy in
the population, and let W), and M, be the expected
number of flowers emptied during the k th bout by a
wild-type and a mutant forager, respectively. Near—
Far is resistant to such mutants if

Z WkTCk > z MkTEk.
=1

k= k=1

Since M, < N — XK\ W,,, it follows that

Z M < My + Mhm,

k=1

+ (N— W] — Wz)(l — T — 7'52).
Also,

Z WkTCk > W1TC1 + WzTL’z.
k=1
Hence, a sufficient condition for Near—Far to be
resistant to these mutants is
W]TE] + WzTEz > M]TC] =+ M27T2

+(N—W,— W) — n — m),
or Am + Bn,>1, where A=(N-—- M, — W)/
(N—W,—W,) and B=(N-—W,— M)/N —
W1 — Wz)
For a Random Search mutant,

M, = M1<N -y W,,,>/N.
Hence, A= [Wl(N— M]) — M1 Wz]/[Ml(N— W1 —
Wz)] and B = Wz(N— Ml)/[Ml(N— W] — Wz)]



