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Abstract

This paper presents an asymmetric game-theoretical model to the following type of animal conflicts: a member of a group is at risk
and needs the help of another member to be saved. As long as assistance is not provided, this individual has a positive, time-
dependent rate of dying. Assisting the individual which is at risk accrues a cost, but losing it decreases each member’s inclusive
fitness. A potential helper’s interval between the moment a group member gets into trouble and the moment it assists is a random
variable, hence its strategy is to choose the distribution of this random variable. In the asymmetric conflict all the potential helpers
have identical strategy sets, but each plays a different role. For example, male or female and young or old. We consider both payoff-
irrelevant asymmetry and payoff-relevant asymmetry and characterize each role’s stable replies. The evolutionarily stable strategies
(ESS) are computed, and the model is applied to the n brothers’ problem. According to our results immediate assistance and no

assistance are possible ESS both under payoff-relevant asymmetry and under payoff-relevant asymmetry.

© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

In asymmetric animal conflicts each of the players is
randomly chosen to play a different role during a certain
contest (Maynard Smith and Parker, 1976; Selten, 1980;
Hammerstein, 1981). For example, owner or intruder in
the war of attrition (Maynard Smith and Parker, 1976;
Hammerstein and Parker, 1982), male or female in the
parental investment conflict (Maynard Smith, 1977,
Grafen and Sibly, 1978; Taylor, 1979; Yamamura and
Tsuji, 1993; Motro, 1994; Balshine-Earn and Earn,
1997; McNamara et al., 2000; Barta et al., 2002;
McNamara et al.,, 2003; Yaniv and Motro, 2004a),
and older brother and younger brother in the three
brothers’ problem (Eshel and Motro, 1988; Motro and
Eshel, 1988).

It has been shown, that any asymmetry between the
players affects their evolutoinarily stable strategies
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(ESS) (Maynard Smith and Parker, 1976; Selten,
1980). For example, in the symmetric war of attrition
mixed ESS exist (Bishop and Cannings, 1978; Bishop et
al., 1978), while in the asymmetric war of attrition there
may exist no ESS (Maynard Smith and Parker, 1976;
Selten, 1980; Hammerstein and Parker, 1982).

We consider the following type of animal conflicts: a
member of n >3 individuals is at risk and needs the help
of another member to be saved. As long as assistance is
not provided, this individual has a positive, time-
dependent rate of dying. Each of the other group
members is a potential helper. Assisting this individual
accrues a cost, but losing it decreases the inclusive fitness
of each group member. A potential helper’s interval
between the moment an individual finds itself at risk and
the moment it assists is a random variable. Thus, a
potential helper’s strategy is to choose the probability
distribution function of this random variable. Note that
in such conflicts the death process of the individual
which is at risk motivates the potential helpers to make
their decisions.
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In our previous paper (Yaniv and Motro, 2004b), we
have presented a symmetric game-theoretical model for
this type of animal conflicts, and characterized the ESS
given two information structures. In this paper, we
develop an asymmetric game-theoretical model for this
type of animal conflicts considering a full information
structure, each of the players knows all the strategies
and is able to observe their realizations. It is assumed
that all the potential helpers have identical strategy sets
but each plays a different role. First we describe each
role’s stable replies, and then we compute the ESS. We
apply the model to the n brothers’ problem and the ESS
are characterized both under payoff-irrelevant asymme-
try and under payoff-relevant asymmetry.

According to our results, ESS always exist both under
payoff-irrelevant and under payoff-relevant asymmetry.
No assistance and immediate assistance are possible
ESS. Fixation depends on each role’s payoff from each
possible outcome of the game.

2. The model

A member of a group, sized n>3, is at risk and needs
the help of another member to be saved. Assisting the
individual which is at risk accrues a cost, but losing it
decreases the inclusive fitness of each group member. As
long as assistance is not provided, the individual which
is at risk has a time-dependent rate of dying, 0 < u(f) < oo
for all 1>0. This rate function defines a continuous
probability distribution function with the nonnegative
half line as its support.

A potential helper’s interval between the beginning of
the game and the moment it “enters” the game and
assists 1s a continuous random variable. Hence, its
strategy is to a priori choose the probability distribution
function of this random variable.

We make the following assumptions:

(1) At the beginning of the game, each of the potential
helpers is randomly chosen to play one of K =n — 1
different roles.

(2) Two or more potential helpers never play the same
role simultaneously.

(3) A single gene determines a single decision of a
certain role.

(4) Each of the potential helpers carries a gene for each
decision of each role.

(5) The genes are independent (unlinked).

(6) A mutation can only appear in one gene at a time.

(7) The behavior of each group member is described by
a non-homogeneous Poisson process, thus a poten-
tial helper’s strategy is the same as to choose its
“entering” rate function.

The moment a group member finds himself at risk, ¢ =
0, n non-homogeneous Poisson processes occur simulta-

neously. If at time ¢ the individual which is at risk has
not been saved yet and is still alive, then one of the
following events can happen during (z,7+ Af): the
individual dies with probability u(f)At + o(Af), a poten-
tial helper playing role k saves the individual with
probability Ai(f)At + o(At). None of these events hap-
pens with probability 1 — [u(?) + D, xAc($)]AL + o(At)
during (2, t 4+ At?).

To compute its expected payoff, a potential helper
considers three outcomes:

e The individual which is at risk was saved by him.

e The individual which is at risk was saved by another
potential helper (playing another role).

e The individual which is at risk has died.

Let P, P5 and P§ be the probabilities of each of the
described outcomes for a player playing role k, and let
U, U% and U} be the respective payoffs.

A potential helper’s expected payoff from playing role
k is
Ep = UNPY 4+ USPE + UL PE. (1)

A pure strategy determines the exact “entering’ point in
time, a degenerated random variable. A mixed strategy
is defined by a continuous probability distribution
function. Since a potential helper is randomly chosen
to play a role in a certain situation, we denote its
strategy by M = (m,my,...,mg): “play m; in role 1,
play m; in role 2" and so on, where m1; is either pure, or
mixed. A potential helper’s behavior in a certain
situation is determined by the role it plays, thus its
behavioral strategy is a component in its strategy vector.
To compute the ESS in the game, we find each role’s
stable reply function. The stable reply function returns a
role’s stable strategy given the other roles’ strategies.
The ESS are represented by some of the intersection
points between the different roles’ stable reply functions.
Role k’s stable reply is computed as follows:

® Assume that almost all the individuals in the
population adopt the mixed strategy, M, which
defines a continuous probability distribution function
for each of the roles, and denote by my role k’s
strategy.

e Assume that a mutant player playing role k adopts the
strategy “‘assist at £”’, where the strategies of the other
roles are the common strategies.

e Study the properties of a potential helper’s expected
payoff from playing role k and adopting the mutant’s
strategy.

Note that if M is an ESS, then player k’s expected payoff
is constant, regardless of the strategy it adopts (Bishop
et al., 1978). According to our assumptions, a single
gene determines the strategy of a certain role and a
mutation can only appear in one gene at a time.
Therefore, if a mutation occurs in the gene which
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determines the behavioral strategy of role k, then it only
affects the potential helper’s expected payoff from
playing role k, as in all the other roles the potential
helper adopts the common strategies.

2.1. A potential helper’s stable replies

Each of the potential helpers knows the others’
strategies: the rate of dying and the entering rates of
all roles, and is able to observe each of the realizations.

If a player playing role k adopts the strategy ni:
“assist at ¢, then its expected payoff from playing role k
is

Ey(rig, M) = Uy O(1) (H Fy-(t))

i#k

4 Uk Z/ Q(S)<H FI(S)> drF;(s) (2)

Jj#k i#j.k
voi [ <H F,-(s>> 400),
s=0 \j£k
where Q(?) is the probability that the individual which is

at risk died before ¢, and F;(¢) is the probability that a
player playing role i assisted the before ¢. In addition,

O(t)=1—0(t) and F(t) = 1 — F(1).
Differentiating the last equation with respect to ¢ we
get:

6Ek(mk,M) %) (Z)Z<H F(z)) dF;(1)

j#k \i#jk

+Uj (H F,(r)) d()

i#k

- Uﬁ‘{ (H R(r)) do()

i#k

+0)) ( 11 R(z)) dF/(t)}

Jj#k \i#jk

uhHom ( 11 Fm) dF;(r)

J#k \i#jk

— (U - UY) (H E(z)) do().

i#k

= (Uk -

Proposition 2.1. If U" > max(U¥, Uk) then role k’s
stable reply is to zmmedzately assist.

Proof. If U’f> max(U¥%, Ué‘), then OFy (i, M) /0t <0 for
all >0 and the player’s stable reply is to immediately
assist. [

Proposition 2.2. If U" < min(U%, Uk) then role k’s
stable reply is to never assist.

Proof. If U < min(U%, U%), then 0E (17, M) /0t >0 for
all =0 and the player’s stable reply is to never
assist. [

To find the mutant’s stable replies in the other cases,
Uk > Uk > Ukand UX > UK > U%, we study the properties
of role k’s instantaneous expected payoff from entering
the game during (¢, + At). We denote role k’s instanta-
neous expected payoff by AEy(ni, M) and compute it
by dividing 0E(i, M)/t by (I1; 2 F(1)Q(0),

vty S 9D _ gt _ iy 420

AE (i, M) = (U5 —
K (i, M) = ( 2 F o)

Let dF;(1)/F;(1) = %;(¢) and note that dQ(1)/ O(t) = (),
role k’s instantaneous expected payoff can be written as

AE (i, M) = (U5 = U > (1)
j#k
— (U} = USHu(). 3)

According to Selten (1980), the ESS of the game are
necessarily pure, therefore we only present role £’s stable
replies with respect to possible situations resulting from
the others adopting pure strategies.

Proposition 2.3. Given UX>UY>U%, role k's stable
reply depends on the other roles’ strategies:

e [f at least one of the other potential helpers immediately
assists, then role k’s stable reply is to never assist.

® If all the other potential helpers never assist, then role
k’s stable reply is to immediately assist.

® Denote by T, the point in time which satisfies:

. Ut — U4

T)=—F——.

0T =i

If none of the other potential helpers immediately

assists and there exists a positive and finite point in

time, T, at which the assistance is given by one of the

other potential helpers, then role k’s stable reply is

(1) Immediately assist where T>T..

(2) Never assist where T<T..

Proof. See Appendix A. [

Proposition 2.4. Given U%>UY> U}, role k's stable
reply depends on the other roles’” strategies:

® [f at least one of the other potential helpers immediately
assists, then role k’s stable reply is to immediately
assist.

® [If none of the other potential helpers immediately
assists, then role k’s stable reply is to never assist.

Proof. See Appendix A. [
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2.2. Equilibrium

The following proposition describes the ESS con-
sidering a payoff-irrelevant asymmetry, all roles have
identical payoff from the same outcome, U’f =U,,
U = U, and U% = U; for all k € K.

Proposition 2.5. The ESS are determined by the payoffs
from the different outcomes:

o If U < min{U,, Us}, then the ESS is no assistance.

o If U,z max{U,, Us}, then the ESS is: all roles
immediately enter the game and a random role assists.

o [f Uy>U,>Us, then the ESS is: a random role
immediately assist, while the others never assist.

o If Us>U;>U, then the ESS are either all roles
immediately enter the game and a random role assists,
or no assistance.

Proof. See Appendix A. O

In cases where the ESS is no assistance, a potential
helper’s payoff is Us. In cases where the ESS is
immediate assistance by a random role, a potential
helper’s expected payoff is

E— U, +(I/l—2)U2.
n—1

Considering a payoff-relevant asymmetry: each role has
a different payoff from the same outcome, each role’s
stable reply is influenced both by the ratio between its
own payoffs, and by the behavior of the other roles. In
the general case, ESS cannot be computed explicitly, as
they are represented by some of the intersection points
between all roles’ stable reply functions. In the next
section we characterize the ESS in the n brothers’
problem under payoff-relevant asymmetry and under
payoff-irrelevant asymmetry.

3. The n brothers’ problem

A member of n>3 related individuals is at risk and
needs the help of another member to be saved. Assisting
this individual accrues a cost. We denote by 0<r<1 the
degree of relatedness between two members. First, we
present the ESS assuming that assisting the individual
which is at risk accrues a different cost for each role.
Later, we present the ESS assuming that assisting the
individual which is at risk accrues identical costs for all
roles.

3.1. Equilibrium considering payoff-relevant asymmetry

Assisting the individual which is at risk accrues a
different cost for each role, a payoff-relevant asymme-

try. We denote by O<cr<1 role k’s probability for
losing its life while assisting.

The expected payoff from playing role k and adopting
the strategy niy: “assist at ¢ is

Er(rig, M) = (1 — c)O(s) <H F,»(s)>

i#k
+ Z (1 —rc)
j#k
x [ Os) Fi(s) | dFj(s)
/S:O (igk ) :

+a-n [ 0<H Fl-(s)> 6. @
$=0 \i#k

The following propositions describe role k’s stable
replies.

Proposition 3.1. If ¢, /min; . {c;} <r, then role k’s stable
reply is to immediately assist.

Proof. We explicitly compute U¥, U’2C and Ué‘. In the
payoff-relevant asymmetric model:

Z#k(l — rcy) fst:o Q(S)(H#j,kﬁi(s)) dF;(s)
Zi#k ft:o Q(S)(Hi;e/,kﬁi(s)) dF;(s)

<max{l —r¢;} =1 — rmin{c;
< max(1 —rc) minfc).

k
Uk =

U’lc =1— ¢, and Ué‘ =1 —r. Since c;/min; . {c;} <r, we
get U’l" >1 —rmin;if{cj} > U’z‘ > U’3‘ and following from
Proposition 2.1 player k’s stable reply is to immediately
assist. [

Proposition 3.2. If r<cy, then role k’s stable reply is to
never assist.

Proof. We explicitly compute UX, U5 and U%. In the
payoff-relevant asymmetric model:

Ej;ék(l —r¢)) f;:o 0(s) Hi#j,kFi(s) dF;(s)
Sk Sy Q) [T i Fills) dF (s)

> min{l — r¢;} = 1 — rmax{c;
> min{l — rq) max(c).

Us =

U’f:l—ck and U§:l—r. Since r<ci, we get
Us>1—rmaxjz{c;}> US> U and following from
Proposition 2.2 player k’s stable reply is to never
assist. O

Proposition 3.3. If ¢, <r<ci/max;.i{c;}, then role ks
stable replies are:

e If at least one of the other potential helpers im-
mediately assists, then role k’s stable reply is to never
assist.

® If all the other potential helpers never assist, then role
k’s stable reply is to immediately assist.
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® Denote by T the point in time which satisfies

Uf — U§

Ui - U5

If there exists a positive and finite point in time, T, at
which the assistance is given by one of the other
potential helpers, then role k’s stable reply is

(1) Immediately assist where T>T ..
(2) Never assist where T<T.,.

Q(Tc‘) =

Proof. If ¢, <r<cy/max;.i{c;}, then using the same
technique as in the proof of Proposition 3.2 it
can be shown that U4>1—rmax;.i{c;}> Uk > US,
hence role k’s stable replies are as described in
Proposition 2.3. [

The following proposition describes the ESS.

Proposition 3.4. The ESS in the game are determined by
the ratio between the degree of relatedness, r, and lowest
cost accrued from assisting, mingcg{cy}.

o [f r<mingck{cy}, then the ESS is no assistance.

o [fr>mingcx{cy}, then the ESS is: the role accruing the
lowest cost immediately assists and the other roles never
assist.

Proof. If r<mingcg{ct}, then following from Proposi-
tion 3.2 all roles’ stable replies are to never assist, and
the ESS is no assistance. In this case, all the roles have
identical payoffs, (1 — r).

Let cqy =mingeg{cr}. If r>cq), then r>cqy/
min; . ){¢;} and it follows from Proposition 3.1 that
the stable reply of the role accruing the lowest cost is to
immediately assist. In this case, it follows from
Propositions 3.2 and 3.3 that the other roles’ stable
replies are to never assist. In equilibrium, the expected
payoff of the role accruing the lowest cost is (1 — ¢(1),
while each of the other roles’ expected payoff is
(1 - }"C(l)). Ol

3.2. Equilibrium considering payoff-irrelevant asymmetry

Assisting the individual which is at risk accrues
identical costs for all the roles, each of the roles has
the same probability of losing its life while assisting,
0<c<1. Hence, each of the roles has the same payoff
from a certain outcome: U; = 1 — ¢ where the indivi-
dual which is at risk was saved by him, U, =1—rc
where the individual which is at risk was saved by
another potential helper and U; =1 —r where the
individual which is at risk has died. Substituting U% =
l—¢, Us=1-rc and Us=1-7r in BEq. (2), the
expected payoff from playing role k and adopting the

pure strategy ni;: “‘assist at ¢’ is

Ex(rie, M) = (1 — )0(1) (H F,-m)

i#k

+=r0Y [ 00 ( 11 Fm) dF;(s)
j#k J5=0 i)k

+-n [ (HE—@)) 6. ©)
s=0 \izk

Note that if K =2, i.e. there are only two potential
helpers, then this equation is similar to a potential
helper’s expected payoff adopting the strategy “assist at
£’ in the symmetric model with full information.

The following proposition describes the possible ESS.

Proposition 3.5. The ESS in the game are determined by
the ratio between the degree of relatedness, r, and cost
accrued from assisting, c.

® [f the cost accrued from assisting is greater than the
degree of relatedness, c¢>r, then the ESS is no
assistance.

® [f the cost accrued from assisting is lower than the
degree of relatedness, c<r, then the ESS is: a random
role immediately assists while the others never assist.

Proof. If ¢>r, then U;< min{U,, U3} and following
from Proposition 2.5 the ESS is no assistance. In this
case a potential helper’s payoff is (1 — r).

If c<r, then U, > U, > Us and the ESS follows from
Proposition 2.5. In this case a potential helper’s expected
payoff is

=0+ n—=2)1-rc)
B n—1 '

E O

4. Discussion

This paper presented an asymmetric game-theoretical
model to the following type of animal conflicts: a
member of a group sized n>3 is at risk and needs the
help of another individual to be saved. Assisting this
individual accrues a cost, but losing it decreases the
inclusive fitness of each group member. As long as
assistance is not provided, the individual which is at risk
has a positive and time-dependent rate of dying. Each of
the other group members is a potential helper. A
potential helper’s interval between the moment a group
member finds itself at risk, and the moment it assists is a
continuous random variable. Therefore, a potential
helper’s strategy is to a priori choose the probability
distribution function of this random variable.

Considering an asymmetric model, we have
distinguished between two  possible situations,
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payoff-irrelevant asymmetry and payoff-relevant asym-
metry. Under the payoff-irrelevant asymmetry, all roles
have identical payoff from a certain outcome. Under the
payoff-relevant asymmetry, each of the roles has a
different payoff from a certain outcome (Maynard
Smith and Parker, 1976). We have assumed that under
the payoff-irrelevant asymmetry, the cost accrued from
assisting is identical for all roles. Under the payoff-
relevant asymmetry each role accrues a different cost.
According to our results the ESS is either immediate
assistance, or no assistance in both cases.

Comparing the payoff-irrelevant asymmetric model to
the symmetric model with full information (Yaniv and
Motro, 2004b) we see that the ESS are identical except
for the case where U, > U > Us. In this case, a potential
helper’s payoff from assisting the individual which is at
risk is lower than its payoff if the individual is saved by
another helper, but is greater than its payoff if the
individual dies. Considering such payoffs, the ESS is
delayed assistance (a mixed strategy) in the symmetric
model with full information. In the asymmetric model
mixed strategies cannot be ESS (Selten, 1980), and the
ESS is either immediate assistance or no assistance. To
compute the ESS in the asymmetric model we first
compute each role’s stable replies. In this particular
case, we found these replies by comparing the other roles
instantaneous total entering rate to a critical total
entering rate. This critical entering rate is similar to the
stable entering rate in the symmetric model with full
information.

Applying both asymmetric models to the n brothers’
problem, we show that the ESS depend on the ratio
between the degree of relatedness, and the cost accrued
from assisting. Under the payoff-irrelevant asymmetry,
if the degree of relatedness is greater than the cost, then
the ESS is immediate assistance by a random role,
otherwise the ESS is no assistance. Under the payoff-
relevant asymmetric model, if the degree of relatedness
is greater than the lowest cost, then the ESS is
immediate assistance by the role that accrued the lowest
cost, otherwise the ESS is no assistance.

A known animal conflict whose ESS are characterized
both under role symmetry and role asymmetry is the war
of attrition. In the war of attrition at least two players
compete for the same resource. Instead of fighting, each
of the players persists and the winner is the one who
persists longer. This conflict was first described in
(Maynard Smith and Price, 1973), who claimed that
unique ESS in the symmetric conflict is mixed. It was
later widely discussed by Bishop and Cannings (1978)
and by Bishop et al. (1978) which characterized the ESS
in the generalized war of attrition. Haigh and Cannings
(1989) have generalized the existing models and
characterized the ESS in the n-person war of attrition.
In the asymmetric conflict, various ESS were character-
ized under different information structures regarding

roles and strategies. It has been shown, that in the
complete asymmetric conflict there exist no ESS
(Maynard Smith and Parker, 1976; Selten, 1980), but
where there is a possibility of errors in role identification
a unique mixed ESS may exist (Hammerstein and
Parker, 1982). Additional asymmetric ESS, considering
mistakes in role identification or in decision making,
were characterized in Hammerstein (1981), Yang-Gwan
(1993), McNamara et al. (1997) and in Haccou and
Glaizot (2002).

Comparing our model to the asymmetric war of
attrition we see that these models differ in a player’s
payoff function. In the war of attrition a player’s payoff
function is affected by the strategies of the decision
makers. In the conflicts we considered, a player’s payoff
function is not only affected by the strategies of the
decision makers, but also by the death process. The
death process enables the existence of ESS in our
complete asymmetric model, while in the complete
asymmetric war of attrition there exist no ESS.

A possible extension of our asymmetric model is
allowing the existence of mistakes. As in other conflicts,
the existence of mistakes may change the characteristics
of the ESS in the game. We suggest to consider both
mistakes in role identification and in strategy choice. It
has been shown (Silk, 2002a, b), that sometimes it is not
so simple for a group member to estimate and define the
asymmetry. In her work, Silk (2002b) presents examples
of random acts of aggression and senseless acts of
intimidation among female baboons. Silk claims that
when fighting is costly, it is profitable for individuals to
exchange information about asymmetries in their pay-
offs. These signals allow each individual to assess its
opponents’ payoffs and compare them to their own.
Individuals are willing to pay a cost in order to identify
their exact role among group members. Based on the
results of Harsanyi (1973) and Selten (1980), Binmore
and Samuelson (2001) have shown that uncertainty
regarding role identification and payoff perturbations
enables mixed ESS under ceratin conditions. Applying
this idea to our conflicts, even where asymmetry exists,
may allow delayed assistance to be an ESS.

Appendix A

Proof of Proposition 2.3. Let UX > UY> UX. Consider-
ing the first case, there is at least one role, for example
role i, which immediately assists: 1;(0) = co and 4,(¢) =
0 for all £>0. The individual has been immediately
saved, thus pw(f)=0Ve>0. This implies that
AE (mix, M)>0 V=0 and role k’s stable reply is to
never assist.

Considering the second case, all the other roles never
assist. That is, 4;(f) =0 for all j#k and for all 1>0.
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Since U]f> U, AE (i, M)<0 Vt=0 and player k’s
stable reply is to immediately assist.

Assume that there exists a positive and finite point in
time, 7, at which assistance is given by one of the other
roles, for example role i. In this case, Zj;é,clj(t) a priori
equals:

0 for 0<t<T,
> A = oo fort=T,
J#k dizinki(t) for t>T.
Since Uk > U and since wt)=0ve>T,

AE (Wi, M)<0 VO<t<T and AE (i, M)=0Vt>T.
Hence, role k’s stable reply will be either to immediately
assist, or to never assist. We find the stable reply by
comparing the expected payoff from each of the
suggested strategies. If role k’s strategy is mi;: “‘im-
mediately assist”, then its expected payoff is

Ey(riig, M) = UX.

If its strategy is #i: “‘never assist”, then role k’s expected
payoff is

Ex(i, M) = USQ(T) + USQ(T).

There exists a critical finite point in time, T, such that,
vy

Us - U§

Note that UX > USQ(T) + USQ(T) for all T>T., and
UN<UKQ(T) + USQ(T) for all T<T,. Therefore, if
T > T, then role k’s stable reply is to immediately assist,

and if T<T,. then role k’s stable reply is to never
assist. [

Q(T(‘) =

Proof of Proposition 2.4. Let UX>UX> U%. Role k’s
instantaneous revenue is

AE (i, M) = — (U = U5 > (1)
Jj#k

+ (U = Uu(), (6)

where Zj 4x%j(1) 1s the instantaneous total entering rate
of the other roles.

Considering the first case, there is at least one role, for
example role i, which immediately assists: 4;(0) = oo
and A;(f) = 0 V¢>0. That is, the individual is immedi-
ately saved, thus wu(f)=0V¢>0. Since Ulf> U~,
AE (i, M)<0 Vt=0 and role k’s stable reply is to
immediately assist.

If none of the other potential helpers immediately
assists then either all of them never assist, or one of
them assists at a positive and finite point in time.
Assume that all the other roles never assist, thus 4;(r) =
0 for all j#k and for all #>0. Since Uf<U%,
AE (i, M)>0Vt>=0 and player k’s stable reply is to
never assist.

Assume that there exists a positive and finite point in
time, 7, at which assistance is given by one of the other
ro}es,. for example by role i. In this case, Z#k (1) a
priori equals:

0 for 0<t<T,
> ) = 00 fort =T,
I S isinki(t) for t>T.

Since w)y=0ve>T and since Ull‘ < U%,
AE (i, M)>0 V=0 and role k’s stable reply is to
never assist. [

Proof of Proposition 2.5. If U;< min{U,, Us}, then it
follows from Proposition 2.1 that all roles’ stable replies
are to never assist, and the unique ESS is no assistance.

If U,> max{U,, Ui}, then according to Proposition
2.2 all roles’ stable reply are to immediately assist. In
equilibrium, all roles immediately enter the game and a
random role assists.

If U, > U, > Us, then according to Proposition 2.3 the
unique possible ESS is that a random role immediately
assists while the others never assist.

If Us>U,;>U,, then according to Proposition 2.4
both immediate assistance and no assistance are ESS
candidates. We show that both strategies are indeed ESS
of the game.

If most of the individuals in the population adopt the
strategy M: “immediately assist”’, then a potential
helper’s expected payoff equals

1 n—2
_1]+U2L1_1:|.

Since U;>U;>U,, adopting any different strategy
decreases the expected payoff. Thus, immediate assis-
tance is a possible ESS.

If most of the individuals in the population adopt the
strategy M: ‘“‘never assist”, then a potential helper’s
expected payoff equals

E(M, M) = Us.

Since Us>U;>U,, adopting any different strategy
decreases the expected payoff. Thus, immediate assis-
tance is a possible ESS. [

E(M,M)=U, [n
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