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 ON HETEROZYGOSITY AND THE EFFECTIVE SIZE OF

 POPULATIONS SUBJECT TO SIZE CHANGES'

 UZI MOTRO AND GLENYS THOMSON

 Genetics Department, University of California, Berkeley, California 94720

 Received February 17, 1981. Revised November 16, 1981

 When a population is subject to fluc-
 tuations in size, the effective population
 number during any time interval is usually
 approximated by the harmonic mean of
 the successive generation sizes (Wright,
 1938, 1939). If there are no mutations, the
 population will eventually reach complete
 homozygosity. The rate at which such a
 population approaches homozygosity was
 investigated by Karlin (1968), for stochas-
 tic, and also by Chia (1968), for cyclic,
 deterministic changes in population size.
 The analysis of homozygosity levels in
 populations subject to stochastic size
 changes was extended by Chia and Pollak
 (1974), who included the possible exis-
 tence of mutations.

 For a population recovering from a great
 reduction in size, Nei et al. (1975) have
 concluded, using numerical computations
 and considering the existence of muta-
 tions, that the harmonic mean approxi-
 mation to the effective population number
 is quite robust. It is our purpose in this
 note to extend the analyses of Nei et al.
 (1975) and of Chakraborty and Nei (1977)
 concerning the robustness of the harmonic
 mean approximation in situations which
 take into account the existence of muta-
 tions.

 We propose to do this by investigating
 cases where a population is subject to cy-
 clic, deterministic changes in size. In such
 a situation, because the mutation rate is
 not zero, the expected level of heterozy-
 gosity, and hence the effective population
 number, will change in value throughout
 the cycle. The harmonic mean approxi-

 mation, on the other hand, will have, in
 the steady state, a constant value. How-
 ever, it will be shown that the harmonic
 mean is a good approximation in many
 such cases. Large discrepancies between
 the expected degree of heterozygosity and
 the value obtained using the harmonic
 mean approximation are found in those
 cases which combine a bottleneck of a very
 small population size together with a long
 cycle period. Also demonstrated here is the
 effect of repeated bottlenecks on greatly
 reducing the expected level of heterozy-
 gosity of the population.

 MATHEMATICAL BACKGROUND

 Consider a diploid population of mon-
 oecious individuals which reproduce by
 random mating (including the possibility
 of random selfing). Consider also that gen-
 erations are discrete, and let Nt be the
 effective population size at the t-th gener-
 ation. Then, assuming all alleles to be
 selectively equivalent, and ignoring mu-
 tation, the expected homozygosity at gen-

 eration t + 1 is given by ft+l = 1 +
 2 Nt

 (1 - 2N__ X where ft is the degree of

 homozygosity at generation t (Malecot,
 1948). Thus, ft+l >ft and eventually the
 population will consist of homozygotes
 only (fixation of one of the existing alleles).

 If u is the mutation rate per locus per
 generation, and if each new mutation is
 different from the pre-existing alleles in
 the population, then

 ft+1 = [2k + t- 2Nt)( -u)2

 Assuming that the mutation rate is very
 small, this can be approximated by

 1 Research supported by N.I.H. Grant (lROl
 HD1273 1).
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 1060 U. MOTRO AND G. THOMSON

 ft+= [ 1 + (i- Nt)K - 2u).

 Hence, for the degree of heterozygos-

 ity H,

 Ht+j = 2u + (1 - 2u)(1- Ht.

 We shall denote by Yt the value of

 (1 - 2u)( 1 - 2N) .Thus,

 Ht+j = 2u + ytHt.

 Substituting Hi by Hi-,, successively,
 we get

 t-I t-1 t-i

 Ht = 2u 1 +E lyi) + Ho y- (1)
 j=1 i=i i=O

 Note that the expected heterozygosity at

 generation t is a function of No, N1, N2
 .). , Nt-1, as well as of Ho and the mu-
 tation rate u.

 If the population size is constant, i.e.,

 if No = N1 = N2 = . . . = Nt-I = N, then

 Ht -2u(1 -yt) + Hoyt (2)
 1 - y

 where y = (1 - 2u)(1- 2N)

 H = lim Ht

 _ 2u _ 4Nu

 1 - y 1 -2u + 4Nu

 If N is large (i.e., if 4Nu > 2u), then,

 approximately, Hm =- 4Nu as ob-
 1 + 4Nu ' a b

 tained by Kimura and Crow (1964).

 Let us focus now on the case where pop-
 ulation size changes from generation to
 generation. We begin by defining the ef-
 fective population number (Ne) of such a
 population.

 Consider a population whose sizes at
 generations 0, 1, 2, . . . , t - 1 are No,
 N1, N2, .. , Nt-1, and let Ho and Ht be
 the degrees of heterozygosity at genera-
 tions 0 and t, respectively. Then the ef-
 fective population number for the epoch 0
 to t - 1 of that population is the number

 N,

 N,

 FIGURE 1a

 N

 N,,

 FIGURE lb

 N

 K

 FIGURE 1c

 FIG. 1. Examples of cyclic changes in population
 size: (a) the two-step model, (b) exponential growth,
 and (c) logistic growth.

 Ne, such that if population sizes at gen-
 erations 0, 1, 2, . . ., t - 1 were constant
 and equal to Ne, it would yield, for the
 same Ho and the same rate of mutation u,
 the same expected degree of heterozygos-
 ity Ht at generation t.

 Mathematically speaking, Ne is the so-
 lution to the equation

 Ht(Ne, Ne, Ne ... , Ne; Ho; u)
 = Ht(No, N1, N2, . . . , Nt-; HoI; u). (3)

 Note that Ne depends on No, N1, N2,
 .). , Nt-1, as well as on Ho and u. Em-
 ploying (1) and (2), equation (3) can be put
 as follows:

 2u(1 - Yet) + Hoy t
 1 - ye

 t-1 t-1 t-l

 =2u ( 1+ H yi +Ho H yi, (4)

 where Ye = (1 - 2u)(1 -2N)
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 POPULATION SIZE AND HETEROZYGOSITY 1061

 If the mutation rate u is zero, then
 equation (4) reduces to

 (1 iNe) [It(1 - 2N) (5)

 which is the expression obtained by Wright
 (1939).

 An approximate solution to equation
 (5), and also to equation (4), is

 1 _ it-l 1 1

 Ne t 1=0 Ni

 i.e., Ne is the harmonic mean of the Ni's
 (Wright, 1938, 1939).

 POPULATION WHICH IS SUBJECr TO
 CYCLICAL CHANGES IN SIZE

 Suppose the size of a population changes
 from generation to generation in a cyclic,
 deterministic way, and let the cycle length
 be of T generations. In other words, let

 NAT = N(0), NkT+1 = N(1), NkT+2 = NM,
 * NkT+T-1 = N(T-1) for every k = 0, 1,

 2). ..

 Bydefiningy() = (1 - 2u)(1- 2N()

 for i=O, 1,2,... . ,T- 1 and substi-
 tuting in equation (1), we get, after some
 simple algebra,

 Ht=kT = 2u 1- 1k( + T1 T1\(i
 1 -r \ J=1 i=Yj )

 + Hork,

 T-1

 where r = [l y(i).
 i=O

 For k very large,

 HkT = + E n y(i)

 Also,

 HkT+m = - E _ y(i+M)_

 for m = 0, 1, 2, . . ., T- 1 and Y(T) =

 Y(o).

 Denoting by 0,, the expression in the

 parentheses of the right-hand side of

 HkT+11, we have

 HkT+m 2u

 for m = O, 1, 2, . . ., T- 1.
 Thus, we see that after a sufficiently

 long repetition of these cyclical size
 changes, the degree of heterozygosity also
 changes in a cyclic way, having the same
 period as that of the changes in the popu-
 lation size, and

 HkT+m - Om

 HkT+n On

 for m, n = 0, 1, 2,. . . T- 1.

 As for the effective population num-
 bers, we have

 Ne(kT+M) HkT+m
 4u(1 - HkT+m)

 =O(m
 2(1- r - 2u m)

 for m = 0, 1, 2, . . , T - 1.
 These numbers also change in a cyclic

 way, with the same period T, and

 Ne(kT+m) - km(l -r - 2uPn)
 Ne(kT+n) (in(1 -r - 2ufm)

 for m, n = 0, 1,2,. . . ,T- 1.
 If u is small,

 Ne(kT+m) _ m

 Ne(kT+fn) kfn

 Note that if we consider the harmonic
 mean of the population sizes NO, N1, N2,
 . . . , Nt1, this harmonic mean will tend,
 as t gets larger and larger, to be a con-
 stant value Ne, equal to the harmonic

 mean of the T repetitive sizes N(O), N(1),
 N(2) ... ., N(T-1). This is because of the
 cyclic nature of the population size
 changes. Ht, the heterozygosity calculated
 using the harmonic mean of the t popula-
 tion sizes, also tends to a constant value,

 4NeU
 namely, 4e

 1 + 4NeU

 To conclude, if population size changes
 from generation to generation in a repet-
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 1062 U. MOTRO AND G. THOMSON

 TABLE 1. The two-step model. u = 10'6.

 Number
 Using the of cycles

 Population Cycle length Harmonic Mean to reach
 size Minimal values Maximal values Approximation steady

 T = R = MaxH/ state
 N1 N2 K1 K2 K1 + K2 H (%) N, H N, H (%) N MinH (see text)

 2 106 1 99 100 0.06 151 0.08 200 0.08 200 1.33 41
 2 106 3 97 100 0.01 37 0.03 86 0.03 67 2.30 15
 2 106 1 9,999 10,000 5.52 14,598 7.36 19,850 7.27 19,608 1.33 23
 2 106 3 9,997 10,000 1.42 3,591 3.36 8,681 2.58 6,623 2.37 9
 2 106 100 9,900 10,000 0.00 2 1.96 4,989 0.08 200 2,445.62 1

 103 106 1 99 100 26.67 90,941 26.69 91,002 26.68 90,992 1.00 7,492
 103 106 500 500 1,000 0.75 1,877 0.84 2,129 0.79 1,998 1.13 38
 103 106 5,000 5,000 10,000 0.49 1,220 1.47 3,739 0.79 1,998 3.03 4

 104 108 5,000 5,000 10,000 6.96 18,695 7.88 21,390 7.40 19,980 1.13 27
 104 108 50,000 50,000 100,000 4.57 11,980 13.63 39,459 7.40 19,980 2.98 3

 itive, cyclic way, then, at the steady state
 (i.e., after a large enough number of cycles
 so that the influence of the initial condi-
 tions fades away) the effective population
 number and the expected degree of het-
 erozygosity both change periodically, with
 the same period as that of the size fluc-
 tuations. On the other hand, the harmonic
 mean approximation to the effective pop-
 ulation number brings about a constant
 effective number and a constant expected
 heterozygosity.

 The question arises as to how good the
 harmonic mean is as an approximation
 to the effective number and also how good

 4Neu is as an approximation to the
 1 + 4 N,u
 expected level of heterozygosity in the case
 of cyclical changes in population size.
 Some examples are given in the following
 section.

 EXAMPLES

 I. The Two-Step Model

 This is the least realistic example of
 the three cases considered in this section,
 but it clearly demonstrates the possibility
 of large differences between the time-
 changing values and the time-constant ap-
 proximation for the expected heterozygos-
 ity.

 We assume that population size changes
 in a cyclic way, with a period of T gen-

 erations. During the first K1 generations,
 the size is constant and equal to N1,
 whereas it is N2 during the remaining
 K2 = T - K1 generations (Fig. la). With-
 out loss of generality, we let N2 > N1.

 In the steady state situation, the effec-

 tive population number and the degree of
 heterozygosity also change periodically,
 reaching their maximal values at the end
 of the K2 generations during which the
 population size is the larger. The minimal
 values are obtained at the end of the K1
 generations of the smaller population size.

 In Table 1 some illustrative examples

 for the two-step model are tabulated.

 II. Cycles of Exponential Growth

 Here we consider populations whose size
 increases geometrically for T generations,

 from size NO at the beginning of the period
 to NT-1 = No(l + r)T-1 at the end of the
 period, where r > 0 is the constant growth
 rate. This pattern is repeated periodically
 (Fig. lb), and Table 2 gives some exam-
 ples of expected values of heterozygosity
 and effective population number at the
 steady state situation.

 III. Cycles of Logistic Growth

 Population size changes periodically, in

 a logistic way. NO is the initial size, K is
 the carrying capacity, r is the growth rate,
 and T is the cycle length (Fig. lc). Some
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 POPULATION SIZE AND HETEROZYGOSITY 1063

 TABLE 2. Cycles of exponential growth.

 Number
 Using the of cycles

 Harmonic Mean to reach
 Population size Growth Mutation Maximal values Approximation steady

 Cycle length rate rate R state
 NO NT-1 T r u H (%) N, H (%) NI MaxH/IH (see text)

 2 106 10 3.298 10-6 0.01 16 0.01 15 1.05 40
 10-7 0.00 16 0.00 15 1.05 46
 10-8 0.00 16 0.00 15 1.05 52

 100 0.142 10-6 0.02 51 0.01 25 2.05 7
 l0-7 0.00 51 0.00 25 2.05 8
 10-8 0.00 51 0.00 25 2.05 9

 1,000 0.013 10-6 0.15 366 0.01 26 14.01 1
 10-7 0.01 366 0.00 26 14.01 1
 10-8 0.00 366 0.00 26 14.01 1

 10,000 0.001 10-6 1.11 2,796 0.01 26 105.43 1
 10-7 0.11 2,783 0.00 26 105.97 1
 10-8 0.01 2,781 0.00 26 106.02 1

 2 108 10 6.169 10-6 0.01 18 0.01 17 1.03 44
 100 0.196 10-6 0.02 58 0.01 33 1.78 8

 1,000 0.018 10-6 0.16 409 0.01 35 11.62 1
 10,000 0.002 10-6 1.37 3,465 0.01 35 96.48 1

 103 106 10 1.154 10-6 2.10 5,362 2.10 5,361 1.00 8,866
 10-8 0.02 5,362 0.02 5,361 1.00 13,990

 100 0.072 10-6 2.63 6,764 2.63 6,746 1.00 1,080
 10-8 0.03 6,763 0.03 6,746 1.00 1,730

 1,000 0.007 10-6 2.75 7,082 2.69 6,898 1.03 110
 10-8 0.03 7,077 0.03 6,898 1.03 177

 10,000 0.001 10-6 3.45 8,924 2.69 6,913 1.28 1 1
 10-8 0.04 8,860 0.03 6,913 1.28 18

 examples of the steady state situation are
 given in Table 3.

 IV. Conclusions

 The examples presented in this section
 show the possibility of significant devia-
 tions of the expected level of heterozygos-
 ity from the approximate, constant value
 obtained by using the harmonic mean as
 the effective population number. The
 magnitude of these deviations depends
 very much on the existence of bottlenecks.
 The smaller the bottleneck size and the
 longer it lasts, the larger the ratio (R) be-
 tween the maximal and the minimal val-
 ues of H (Table 1) or the ratio (R) between
 the maximal and the approximate values
 of H (Tables 2 and 3).

 In each case, we have changed the mu-
 tation rate from 10-6 to 10-i and to 10-8

 per generation. These changes affect H
 (which decreases as u decreases), but have
 very minor effect on the values of R or R.

 It should be noted that in most of the
 examples presented in Table 1 and in those
 presented in Table 3, the population
 maintains a constant size of 106 or 108 for
 almost all the time, but because of the
 strong effect of the bottlenecks, heterozy-
 gosity is reduced to a far lower level than
 the constant value of 80% or 99.75% ex-
 pected in the case of a constant popula-
 tion size of 106 and 108, respectively
 (u = 10-6). The long lasting consequences
 of a bottleneck were clearly demonstrated
 by Nei et al. (1975). Here we observe the
 very strong effect of repeated bottlenecks
 on the perpetual reduction of the expected
 level of heterozygosity.

 In all our examples of cyclic variations
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 1064 U. MOTRO AND G. THOMSON

 TABLE 3. Cycles of logistic growth.

 Population size
 Using the

 Carry- Muta- Harmonic Mean
 ing Growth Cycle tion Maximal values Approximation R=
 capa- rate length rate MaxH/

 No city K r T U H (%) Ne H (%) Ne H Comments

 2 108 0.1 5,000 10-6 1.05 2,642 0.36 909 2.88 After 118 generations
 10,000 10-6 2.08 5,319 0.72 1,818 2.88 population size is

 already larger than
 .99K.

 Exp. het. if pop. size

 was constant and

 equal to K: 99.75%.

 2 108 0.2 5,000 10-6 1.24 3,131 0.66 1,667 1.87 After 230 generations
 10,000 10-6 2.46 6,297 1.32 3,333 1.87 population size is

 already larger than
 .99K.

 Exp. het. if pop. size
 was constant and

 equal to K: 99.75%.

 103 108 0.1 20,000 10-7 41.78 1.794 x 106 41.67 1.786 x 106 1.00 After 165 generations
 population size is
 already larger than
 .99K.

 Exp. het. if pop. size
 was constant and

 equal to K: 97.56%.

 in population size, we have considered the

 steady state situation, when the expected
 level of heterozygosity oscillates with the
 same period as the population size fluc-
 tuations. The question is, how long does
 it take to approach the steady state situ-
 ation? This time depends, among other
 factors, on the initial conditions. Thus, if
 we begin with the "least favorable" con-
 ditions, we can get, for each example, the
 least upper bound for the time it takes to
 be in a specified neighborhood of the steady
 state. For each example, we have calcu-
 lated the number of cycles it takes (begin-

 ning with Ho = 1) for the percentage dif-
 ference between the maximal value of H
 and its steady state value to be less than
 1%. This number depends on the severity,
 both in terms of size and extent, of the
 bottleneck and on the cycle length. It can
 be quite large (e.g., 7,492 for example 6
 in Table 1 or even 13,990 for example 18
 in Table 2), but in some cases, the neigh-

 borhood of the steady state is reached al-
 ready in the first cycle.

 DISCUSSION

 The purpose of this work was to devel-

 op mathematical formulae for the effective
 population number and the expected level
 of heterozygosity of populations changing
 in size during time. This problem was
 treated by Karlin (1968) and by Chia (1968)
 for cases where there are no mutations.
 Chia and Pollak (1974) considered the same
 problem, taking into account the existence

 of a positive, constant mutation rate,
 where they assumed the population sizes
 to be states in a finite irreducible Markov
 chain. The cases treated here extend, in a
 sense, a special case of Chia and Pollak's
 work. We have considered the steady state
 situation of populations whose size changes
 in a repeated, cyclic way. In such cases
 we see that the effective population num-
 ber and the expected degree of heterozy-
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 POPULATION SIZE AND HETEROZYGOSITY 1065

 gosity both oscillate with the same period
 as the population size fluctuations. Under
 Chia and Pollak's assumptions of large
 population sizes and small cycle length,
 the different levels of heterozygosity are
 approximately equal, so they considered
 the degree of heterozygosity to be the av-
 erage of these values. Their definition of
 the effective population number, which,
 for the monoecious case, is the reciprocal
 of the asymptotic average, over popula-
 tion sizes, of the probabilities that two ga-
 metes uniting to form an individual came
 from the same individual one generation
 earlier, leads to a fixed number. The def-
 inition of the effective population number
 used in our work as the constant size which
 would yield, under similar circumstances,
 the same change in heterozygosity as ex-
 pected in our varying-size population (see,
 e.g., Crow and Kimura, 1970), gives a
 time-dependent value. Since in the steady
 state of our cyclic model, the harmonic
 mean approximation yields a constant ef-
 fective number, and consequently, a con-
 stant expected level of heterozygosity, dif-
 ferences between the actual expected
 heterozygosity and the approximated val-
 ue always exist. Unless there are substan-
 tial bottlenecks accompanied by suffi-
 ciently long cycle lengths, these differences
 are relatively small, and Wright's approx-
 imation is very satisfactory.

 Large deviations of the periodically
 changing heterozygosity from the constant
 value obtained by using the harmonic
 mean as the effective population number
 are demonstrated in cases where a bottle-
 neck is present in the cycle. These devia-
 tions are more conspicuous the longer the
 cycle length, but still large deviations are
 found for cycle lengths very much smaller
 than 1/u. (In fact, the examples treated
 show that changing the mutation rate u
 from 10-6 to 10-7 and to 10-8 per gener-
 ation has almost no effect on the relative
 size of these deviations.)

 The effect of a bottleneck on the expect-
 ed heterozygosity of the population in sub-
 sequent generations was convincingly
 demonstrated by Nei et al. (1975). In their
 example the effect of a one-time bottleneck

 is to dramatically reduce the expected
 heterozygosity of the population. Hetero-
 zygosity decreases monotonically for some
 generations until it reaches a minimal
 value, and then increases again to the

 4Nu
 steady-state value 1 +4Nu But the rate
 of approach to the limit is very slow-it
 takes many generations (the number de-
 pends, of course, on the growth rate and
 also on the mutation rate) to reach the
 neighborhood of the steady state value;
 much longer than is needed for the popu-
 lation to restore its original size. In other
 words, although the population maintains
 an almost constant size for a very long
 period, the expected heterozygosity still
 exhibits the consequences of the apparent-
 ly "long forgotten" bottleneck.

 In this work we have demonstrated the
 effect of repeated bottlenecks on the de-
 gree of heterozygosity. These, combined
 with long enough cycle length, not only
 produce large deviations from the widely
 used approximated values, but also great-
 ly reduce the heterozygosity level at all
 stages in the cycle. This reduction in het-
 erozygosity is well demonstrated in some
 of the examples in the previous section,
 especially those of the logistic growth
 model. There we see that although the
 population size is very close to 106 for about
 99% of the time, heterozygosity hardly
 reaches 5 % of the value that we would
 expect if population size was constant and
 equal to 106.

 As a concluding remark, we would point
 out that it is unrealistic to assume that
 populations will experience cyclic fluctua-
 tions in size of the constant periodicity as
 investigated in this work. We have con-
 sidered such situations for the sake of
 mathematical simplicity. Nevertheless, we
 believe that the general effects illustrated
 here will also be produced for less regular
 variations in population size.

 SUMMARY

 The effective population size and the
 expected level of heterozygosity are con-
 sidered here for populations whose size
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 1066 U. MOTRO AND G. THOMSON

 changes in a deterministic, cyclic way.
 Repeated bottlenecks, combined with long
 enough cycle length, not only provide large
 deviations from the widely used approxi-
 mated values, but also greatly reduce the
 heterozygosity level at all stages of the
 cycle.
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