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The question of whether an offspring should migrate or stay near its parents is 
investigated in a model in which this decision is made by the offspring itself. 
Although migration is hazardous, the model presented here shows the existence of 
an optimal migration strategy which implies, under certain circumstances, a 
positive probability of choosing migration. Also briefly discussed is the relationship 
of the migration strategy to the parent-offspring conflict. 

1. INTR~OUCTI~N 

This is the third in a series of three papers, which examine the question of 
optimal rates of dispersal. In these works we investigate the existence of an 
optimal division of the progeny of an individual into migrating and 
nonmigrating descendants, where the survival probability of a migrating 
offspring is smaller than that of an offspring which remains near the parent. 

In the first paper (Motro, 1982a) we studied haploid populations. In the 
second paper (Motro, 1982b) we treated models of diploid populations, in 
which the division of the progeny is determined by the parent’s genotype, 
while in this paper we investigate a diploid model in which the tendency to 
migrate is determined by the genotype of the offspring itself. 

A similar question was investigated by Hamilton and May (1977). 
Referring to kin selection arguments, they used evolutionarily stable strategy 
(ESS) considerations to find the optimal rate of migration. The attempt here 
is to develop a more rigorous model, based on changes in gene frequencies. 
Unlike the haploid case, where identical results are obtained by the ESS 
methods of Hamilton and May and by the gene frequency models (Motro, 
1982a), the results in the present case are different for these two different 
approaches. 
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2. THE MODEL 

This model deals with a migration strategy in which the decision of 
whether to migrate or to stay near the parent is made by the offspring itself. 
We investigate the existence of an optimal strategy-a single strategy which 
is stable against any mutant strategy, and which, if it appears as a mutant, 
will be established in any population. 

The assumptions of the model are as follows: 

(1) We consider an infinite population of diploid and monoecious 
organisms, which reproduce by random mating. 

(2) Each individual in the population has the same expected number 
(,u) of descendants. 

(3) Each descendant either remains near the parent, with probability 
1 - a (0 < a < l), or leaves its birth site and migrates (with probability a), 
in an attempt to establish itself in another living site. The number a is 
genetically determined (by a single locus), and the decision of whether to 
migrate or to stay at home is made according to the genotype of the 
descendant. 

(4) Those progeny which migrate are uniformly dispersed over the 
entire population range. 

(5) Generations are discrete and nonoverlapping. After reproduction, 
the previous generation is eliminated, and each living site is reoccupied by a 
single individual. 

(6) The successor is chosen at random from among all the young 
individuals present at that site, which are either the nonmigrating 
descendants of the former occupant, or the immigrating descendants of other 
previous generation individuals, which occupied other living sites. 

(7) Migration involves a risk to the migrating individual, so we 
assume that the probability of a migrating offspring to withstand the hazards 
of migration, and finally reach the state of competition on a living site, is 
only a fraction /I (0 < p < 1) of that probability for a nonmigrating one. The 
smaller /I is, the more stringent are the environmental conditions endured by 
the migrating young. 

The model considered here differs from the simple diploid model (Motro, 
1982b) in that in the present model the probability of migration is deter- 
mined by the genotype of the offspring, whereas in the simple diploid model 
the division of the progeny into dispersed and nondispersed descendants was 
determined by the parent’s genotype. Apart from that, the assumptions of 
both models are the same. 

It should be noted that the model presented here can also be expanded to 
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include dioecious populations. (Please see the remark at the end of this 
section.) 

To find the optimal rate of migration, we consider the locus which 
determines the migration rate a to have two alleles, A and B, so that the 
population can consist of three genotypes, AA, AB, and BB, with migration 
rates a,, aI, and a3, respectively. 

If U, U, and w (U + u + w = 1) are the frequencies in the population of the 
three genotypes, then, assuming random mating, the expected number of 
immigrating descendants per living site is A = clp (a, p2 + 2a,pq + a,q*). 
The expected number of AA’s among the immigrants is I, = ,@a, p2, the 
expected number of AB’s is A, = 2p/3a,pq and that of BB is A, =@a,q*, 
where p = u + $0 is the frequency of allele A among the genes and 
q = w + 40 is the frequency of B. This is summarized in Table 1. 

The frequencies of the three genotypes in the next generation are 

(24’,?J’,w’)=(u,u,w) P,, [;;I f:t F,i]? 

where, assuming a large number of competing young per living site, 

~(1 - a,)p + 1, 
“‘=c1(1 -a,)p+p(l -aa,)q+L’ 

PI2 41 4 4 
- 

+ fb = ~(1 ’ - a,)P +N - 4 4 + 2 

p,3= 
13 

~(1 - a,)P + ~(1 - a,) 4 + A ’ 

p2, = 
Ml- al)p f A, 

$41 - a,>p + $41 -a*) + fp(l - a3) q + 1’ 

p22 = 
Ml - 4 + A2 

Ml - a,)p + $41 -a*) + +(l - a3> q + J. ’ 

p23 = 
$4 - (13) 4 + & 

jp(l - a,)p + Ml - a*) + $41 - a,)9 + J ’ 

“‘=p(l -aJp+fl(l -a,)q+A’ 

p32 = 
PC- adp + A2 

i41 - 4P + 41 - a31 4 + A ’ 

p33 = 
41 - f-4 4 + A3 

41-4~+~(1--~)9+~’ 
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162 UZI MOTRO 

Y 



OPTIMAL RATES OF DISPERSAL 163 

We consider the conditions for the stability of the monomorphic 
equilibrium points (u, u, w) = (1, ($0) and (u, u, w) = (0, 0, 1). The detailed 
analysis is presented in Appendix 1, and the results are summarized below. 

Set 

a*=0 if OCP<+ 

Using the results of Appendix 1, we have proved 

THEOREM. Each a2 # a* determines an interval Z (containing a* as an 
interior point, and having a2 as an open end bound), such that lya, E I, then 
(l,O, 0) is stable, and if a, &f (f is the closure of I), then (l,O, 0) is 
unstable. Likewise, if a3 E Z or if a3 4 f, (O,O, 1) is stable or unstable, 
respectively. 

Zf a, = a*, then Z is the null set. 

(The bounds of the interval Z are presented in Appendix 2.) 
Let us define a1 (i = 1,3) is “closer” to a* than a*, if ai E I; ai is 

“further” from a * than a*, if ai @ i Thus, the results of our theorem can be 
put as follows. 

(1) If one of the homozygotes has a rate of migration which is 
“closer” to a* than a, (which is the rate of migration of the heterozygote) 
and the a of the other homozygote is “further” from a* than a*, then the 
monomorphic equilibrium of the former homozygote is stable, whereas that 
of the latter is unstable. 

(2) If the a’s of both homozygotes are “closer” to a* than the rate of 
migration of the heterozygote, both monomorphic equilibria are stable. 

(3) If both homozygotes have a’s which are “further” from a* than 
a2, both monomorphic equilibria are unstable, and a coexistence of both 
alleles is maintained in the population (a protected polymorphism). 

Hence the type with the strategy a * has a selective advantage over all 
types having other strategies-a population consisting of a*-type individuals 
is stable against the appearance of any mutant, whereas mutants with the 
strategy a* will be established in any population with a # a*. 

Remark. In our model we considered a monoecious population. We get 
also similar results for a dioecious population, under the following 
assumptions. 
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(1) The young individuals of one sex (the “females”) always migrate, 
and are uniformly dispersed over the entire population range. 

(2) The young individuals of the other sex (the “males”), either 
migrate (with probability a) or stay near the parent (with probability 1 - a). 
The number GI is determined by the genotype of the offspring itself. 

(3) Each living site is occupied by a single couple, consisting of one 
male and one female. The young males are those which compete for the 
living sites, and after a male establishes itself in a site, it is joined by a 
random female. 

It turns out that the same optimal rate of migration (a*), obtained in the 
monoecious model, is also valid for the dioecious model. Here, a* is the 
optimal strategy for the males (the females always migrate). 

3. DISCUSSION 

In our model, the descendants are those which decide whether to migrate 
or stay near the parent. Since migration is risky, it was interesting to find 
that, in certain circumstances, the optimal strategy implies a positive 
probability that the offspring will decide to migrate (a probability that 
increases as a function of the survival chances of the migrants). More 
specifically, the optimal rate of migration is 

a*=0 if O<P<: 

P-i 
=(p$)(j-p) if 4 L<P,< 1, 

where ,8 is the survival probability of the migrating offspring. Thus, if 
migration is too risky @ < j), the optimal strategy is to stay at home. But if 
the chances of surviving migration are large enough, the optimal strategy is 
to choose to migrate with probability C-Z* > 0. It should be noted that by 
choosing to migrate, the migrating descendant reduces its own survival 
probability. Yet, its migration increases the survival chances of its brothers, 
with which the migrant is more likely to share the same genotype. 

On the other hand, the optimal rate of migration obtained by Hamilton 
and May (1977), using ESS techniques based on the maximization of the 
inclusive fitness, is different than the rate obtained in our model, which has 
the same basic assumptions. The ESS strategy of Hamilton and May’s 
inclusive fitness model is (using the same notation as in this work) 
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a*=0 if O<P<+ 

W-1 
= 4/3-p*- 1 

if + 1, 

a migration probability which is greater than the probability in our gene 
frequency model. Hence, the optimal rate of migration, which will be selected 
for in the population, neither maximizes the Fisherian fitness (i.e., the 
expected number of surviving descendants in the next generation) of the 
migrants, nor does it maximize their inclusive fitness. 

Also interesting to note is that the optimal rate of migration, in the model 
treated here, is always smaller than the optimal rate (l/(2 -p), 0 < /I < 1) 
obtained in the case in which the parents are those that decide about the 
division of the progeny (Motro, 1982b). This clearly illustrates the contrast 
inherent in dispersal, a contrast between the interests of the parents and those 
of their progeny. Whenever the decision is made by the parent, it would 
disperse a larger fraction of its progeny than would be dispersed if the 
decision is made by the offspring themselves. The parents prefer that their 
progeny will be more altruistic toward each other than the offspring are 
willing to be. In most cases, especially in plants, this contrast of interest 
cannot lead to a real conflict-the progeny is dispersed according to its 
morphological phenotype, which is determined either by the genotype of the 
parent or by the genotype of the offspring itself. 

As for animals, in those of the cases in which the dispersal mechanism is 
behavioral, the parent-offspring conflict can be expressed. Generally, it 
seems more likely that the parents, which are stronger than their progeny 
and usually control the resources essential for the growth of the descendants, 
are those which enforce their strategy on their progeny. Thus, the parents 
may compel their descendants to be more altruistic, a situation suitably 
termed by West-Eberhard (1975) as imposed altruism. But while Alexander 
(1974) views this situation to be the only possible one, Trivers (1974) claims 
that sometimes the offspring can prevail. Zahavi (1977) suggests that a way 
by which the seemingly weak offspring can impose their wishes on their 
parents is by threats of self-destruction. 

APPENDIX 1: STABILITY OF THE 
MONOMORPHIC EQUILIBRIUM POINTS 

We begin by considering the monomorphic equilibrium (u, v, w) = (0, 0, 1). 
For a2#a3, the stability of (O,O, 1) is determined using the local stability 
analysis technique. We consider the eigenvalues of the matrix 
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p=O 
,,=o 

;I,” 

p’ = u’ + jv’ = (P,, + dP,*) u + (Pzl+ f&J v + (P,, + fP,,) w 

v’ = P,,u + P,,v + P,,w. 

Hence 

aPI f(l -a*) + QU - a*) + Paz 

8P p=o 
tJ=o 

= I-a,+pa, 1 -a3 +Pa3 

aP’ - f(l-4 + f<l - 4 
Lb p=0 

u=o 
= l-a,+/?a, f(l -a,) + i<l -a,) +@a3 

Lb’ 1 -a2 l-aa,+2Pa, 

aP = I-aa,+jYa, 
+ 

p=o 
u=o 1 -a3 +Pa3 

C%’ - f(1 -a*) t(l -a*) 
C?V 

;I; = l-aa,+@, +f(l--aJ+f(l-a,)+/3a,’ 

The eigenvalues of our matrix are X, = 0 and 

$0 - 4 +& 
x2= 1 -a3 +pa3 

31 - 4 
+f(l-a,)+f(l-aa,)+/3a,>0’ 

Hence, the monomorphic equilibrium is stable if x2 < 1 and is unstable if 
x,> 1. 

After some simple algebra we get 

sign(1 -xZ)=sign[(a,-aa,){(f-/.I)[(1 -/3)(1 -a3) 

+ f(l -41 +PU -P)ll. 

The expression in braces, which we shall denote by D, is positive for 
/?<i. As for j c/I< 1, 

D>O if a,>=-2(1 -P)a3 

D<O if at <E-2(1 -/3)a,. 
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FIG. 1. Stability analysis of the monomorphic equilibrium (u, v, w) = (0, 0, 1): the case 
5<8<1. 

The lines a 2 = (4/I - 3)/(2/I - 1) - 2(1 --/I> aj and a2 = cz3 intersect at the 
point a2 = a3 = (/I- ;)/(@I - +)(a -/3)), and we shall denote this value, 
which is a function of j.?, by a’. 2(/I) is a continuous and increasing function 
in the interval 4 <j?< 1, a-(:)=0, and C(l)= 1. 

Thus, for fl< 4, the monomorphic equilibrum (0, 0, 1) is stable if 01~ > a, 
and is unstable if a2 < a,. For /I > i, the situation is graphically summarized 
in Fig. 1. 

Because of symmetry, the above results are also valid for the other 
equilibrium point (LO, 0), provided we change a3 into a,. 
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APPENDIX 2: THE INTERVAL I 

I= p-4 %I if /3<<s and a,#a* or 

if ,B>a, a,>a* and M<O 

= (M a,) if p>i, a,>a* and Ma0 

= (a,, 11 if /?>a, a,<~* and M>l 

= (~2, W if P>i, a,<a* and M<l 

= 4 if a2=cf* 

where 

4(4P- 3) 
M= (2P- l)(l -j?) - 2(lolf-/3), 
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